
A Survey on Developer-Centred Security
Mohammad Tahaei∗, Kami Vaniea†

School of Informatics, University of Edinburgh
Edinburgh, UK

∗mohammad.tahaei@ed.ac.uk, †kvaniea@inf.ed.ac.uk

Abstract—Software developers are key players in the security
ecosystem as they produce code that runs on millions of devices.
Yet we continue to see insecure code being developed and
deployed on a regular basis despite the existence of support
infrastructures, tools, and research into common errors. This
work provides a systematised overview of the relatively new
field of Developer-Centred Security which aims to understand
the context in which developers produce security-relevant code
as well as provide tools and processes that that better support
both developers and secure code production. We report here on a
systematic literature review of 49 publications on security studies
with software developer participants. We provide an overview of
both the types of methodologies currently being used as well
as the current research in the area. Finally, we also provide
recommendations for future work in Developer-Centred Security.

Index Terms—Usable Security and Privacy, Developers, Soft-
ware Development, Human Factors, Human Computer Interac-
tion, Computer Security, Systematic Literature Review, Survey

I. INTRODUCTION

Software is increasingly being integrated into all aspects
of society, it controls everything from small home appliances
such as kettles [1], to large systems like power plants [2],
as well as data management infrastructures such as health
records [3]. Each of these systems has a specific non-security
goal (tea, power, health) but they also have an expectation
from the public that they will provide other non-functional
requirements such as safety, reliability, and privacy.

While it would be wonderful if developers could do all
of that, instead we see that the introduction of security
vulnerabilities into code is becoming a very large problem. The
most common types of coding errors have remained relatively
stable over time. Code Injection, for example, has topped the
OWASP top ten vulnerabilities list for the last eight years [4]
and 78.5% of recently scanned applications still suffer from
it [5]. In 2013 alone, 88% of apps (out of 11, 748) on Google
Play had at least one cryptographic API mistake [6].

Developers, much like end users [7], [8], need support
to create applications that are functional, usable, efficient,
maintainable, and secure. The emerging and rapidly expanding
area of Developer-Centred Security (DCS) aims to address
some of these needs by applying existing methodologies from
Human Computer Interaction (HCI) to the area of software
development and security [9]–[12]. The application of HCI to
software development has seen great success in the fields of
API usability [13] and end-user software engineering [14].

To help developers make better use of security technologies
many different approaches have been suggested such as secu-
rity APIs [15], static [16] and dynamic [17] code analysis
tools, and code creation processes such as pair program-
ming [18]. However, many of these proposed solutions have
had little success, potentially due to usability and workflow re-
lated issues. To systematically address these issues researchers
need to understand the landscape of software development as
it relates to both software developers and to security.

We present a formal structured literature review which
identifies works that feature the trio of security, software devel-
opment, and at least one study involving users. We identified
49 relevant research papers which we then sorted into eight
themes: organisations and context, structuring software devel-
opment, privacy and data, third party updates, security tool
adoption, application programming interfaces, programming
languages, and testing assumptions.

Our review highlights a lack of research in several aspects
of DCS including, how to make security a business value and
security often being ignored because it is a secondary require-
ment. To our surprise, even though programming languages are
a fundamental tool in software engineering, only one paper
discussed issues around security evaluation of programming
languages with user studies. Software updates, which are crit-
ical for software security and a point of discussion in end-user
usable security [19], are rarely discussed in DCS literature;
with only one reviewed paper considering the challenges of
using packages and libraries.

II. SYSTEMATISATION APPROACH

We used a Systematic Literature Review [20] approach in
order to identify all relevant literature. Two authors were
engaged in every step, and decisions were agreed by both
researchers to minimise the effects of bias and priming.

a) Selecting Literature: DCS is a relatively new area
which crosses several fields resulting in papers in a range
of publication venues. We decided to cover the top five
publications in three fields: HCI, Software Systems, and
Computer Security & Cryptography. To select specific high-
quality publication venues in those areas, we used a Google
Scholar feature that ranks scientific publications based on their
h5-index and h5-median. We chose the top five listed venues
(Table I). We also explicitly added the Privacy Enhancing
Technologies Symposium, Symposium on Usable Privacy and
Security (SOUPS), and IEEE Secure Development Confer-
ence. The first covers privacy areas, the second specifically



TABLE I
PUBLICATION VENUES REVIEWED PAPERS DRAWN FROM.

Publication h5-index h5-median Total Selected
Computer Security & Cryptography
Computer and Communications Security 77 128 395 4
Security and Privacy 74 129 69 2
Information Forensics and Security 73 103 261 0
USENIX Security Symposium 70 106 66 1
International Cryptology Conference 62 84 65 0
Human Computer Interaction
Computer Human Interaction 86 117 150 2
Computer-Supported Cooperative Work 56 79 34 2
Pervasive and Ubiquitous Computing 52 76 65 0
User Interface Software and Technology 45 72 17 0
Affective Computing 39 54 2 0
Software Systems
Software Engineering 74 102 154 6
Software Engineering 56 83 79 1
Journal of Systems and Software 51 71 92 0
Foundations of Software Engineering 50 82 44 3
Programming Language Design and Implementation 50 78 30 0
Others
Symposium on Usable Privacy and Security 31 60 265a 10
Secure Development Conference NA NA 15 0
Privacy Enhancing Technologies Symposium NA NA 119 0
Snowballing NA NA 21 18b

Final set 1943 49
aHas results from multiple sources.
bAll items are selected, three items fit into one of the lists above.

targets usable security research, and the third is a newly
established conference on secure development.

For the search itself, we used the The ACM Digital Library
for ACM publications (SOUPS 2005 − 2013), IEEE Xplore
digital library for IEEE publications, Engineering Village (EV)
for PETS, International Cryptology Conference (CTYPTO),
USENIX Security, Journal of Systems and Software, and
SOUPS (2014 onward). We used EV because USENIX Se-
curity, CRYPTO, and ScienceDirect indexing websites do not
support complex search queries. We limited our search to
title, abstract and keywords. We also limited results to those
published before October 13, 2018.

("security" OR "privacy" OR "cryptography")
AND
("human" OR "empirical" OR "user" OR "users" OR "interview" OR "interviews"
OR "survey" OR "surveys" OR "lab study" OR "laboratory study" OR "think aloud"
OR "cognitive walkthrough" OR "questionnaire" OR "questionnaires"
OR "usability" OR "usable")
AND
("developer" OR "developers" OR "development" OR "software" OR "app"
OR "application" OR "programmer" OR "programmers" OR "software engineer"
OR "software engineers" OR "system administrator" OR "system administrators")

Listing 1: Executed query

b) Practical Screen: The query in Listing 1 was executed
on the 18 venues (Table I) which generated 1922 results.
The resulting publications were then loaded into a reference
management software (Zotero) which was used to remove
duplicate papers as well as store notes taken during screening.

One researcher then went through and applied the following
screening criteria by looking at the title and abstract of each
publication. The researcher intentionally took a slightly broad
view of the criteria in the first pass erring on the side of
inclusion rather than exclusion.
Security - The paper had to directly involve cyber security,
though it did not have to be the primary topic.
Software Development - The paper had to involve the process
of software development or at least code creation. Management
practices that directly impacted developers were also included.
User Study - The paper had to include a user study involving
research subjects. Studies that only had artefact analysis, such

as only looking at code samples, or tools were excluded.
Full Papers - Posters and extended abstracts were excluded.

The first pass resulted in 46 publications marked for po-
tential inclusion. A second researcher then went through and
reviewed all the included publications also looking through
the publication content, they identified publications which did
not meet the criteria, these were then discussed and 18 were
excluded. The final set included 28 papers.

Snowball: To further improve our coverage, we also use
a snowball approach to find additional literature. For each
of the identified papers above, a researcher read through the
titles of all references to find any relevant-sounding papers not
already identified. For relevant titles, they also read through
the abstracts and full papers. Snowballing resulted in 21 new
items. Three of these papers were earlier versions of one of
the publications we had initially identified. However, they had
not appeared in our search results. The final set, including
snowballing, included 49 papers. The first paper appeared in
2008 and the last paper was published in 2018.

c) Synthesise Methods: We identified a set of assessment
criteria based on our own experience as well as criteria
used in previous literature to evaluate papers [21]–[27]. One
researcher then went through all the papers and extracted the
methodology information. When uncertain, they discussed the
outcome with the other researcher.

d) Synthesise Themes: Both authors reviewed the papers’
main contributions in the final set and constructed an affinity
diagram [28] to highlight the main contribution themes. Affin-
ity diagrams are a grounded approach for sorting qualitative
data into themes. In this case, we used the papers themselves
as the unit of analysis and sorted them based on their primary
topic. Both authors then completed a more in-depth reading
of papers theme-by-theme resulting in several iterations to the
themes and construction of sub-themes. While each paper is
grouped under the theme associated with its primary contri-
bution in Table II, many papers touch on multiple themes.

e) Limitations: We limited our initial query to 18 venues
which we selected from Google Scholar. While we believe that
this approach created a strong starting point, one could argue
that a different selection approach might be more relevant
and results in a more appropriate sample. To catch studies
that we could not find in our initial search, we carried out a
snowballing method to include more papers. We chose to limit
our review to papers with user studies in them to both scale
the review to a reasonable size and to focus on papers which
take a deep look at the human factors issues developers face.

III. METHODOLOGY RESULTS

We begin by discussing the methodology information pre-
sented in the papers in terms of three main criteria: research
design, data collection, and data analysis. This document
comes with following supplementary materials: A BibTeX
file, an Excel spreadsheet, and database queries. The files
are available on the workshop’s website and https://doi.org/
10.7488/ds/2535.

https://eusec.cs.uchicago.edu
https://doi.org/10.7488/ds/2535
https://doi.org/10.7488/ds/2535


TABLE II
LIST OF ALL REVIEWED PUBLICATIONS GROUPED BY THEME.

Publication/Theme Study Method Participants N R
es

ea
rc

h
Q

ue
st

io
n

Pi
lo

t
C

as
e

C
on

te
xt

R
ec

ru
itm

en
t

D
em

og
ra

ph
ic

s

E
th

ic
s

M
ix

ed
M

et
ho

ds

D
at

a
A

na
ly

si
s

Q
uo

te
s

C
om

pa
re

w
ith

L
ite

ra
tu

re

L
im

ita
tio

ns

St
ud

y
M

at
er

ia
ls

Organisations and Context
[29] Semi structured interviews Developers 15

[30] Semi structured interviews Software professionals 42

[31] Interviews Developers 42

[32] Survey, Survey Developers 14, 61

[33] Survey, Survey, Observations, Interviews Mix 15, 12, 23, 15 NA
[34] Interviews App security experts 12

[35] Survey, Survey, Observations, Interviews Mix 15, 12, 23, 15 NA
[36] Semi structured interviews Mix (With crypto background) 21

[37] Semi structured interviews Developers 13

[38] Semi structured interviews Security experts 32
Structuring Software Development

[39] Semi structured interviews Mix (70% Developers) 10

[40] Lab experiment (Architectural design task) Students 90

[41] Online tasks Developers 30

[42] Lab experiment (Architectural design task) Students 64

[11] Survey, Lab experiment Developers 295, 54

[43] Survey Software practitioners 9

[44] Semi structured interviews, Survey, Survey Developers 16, 51, 532
Privacy and Data

[45] Semi structured interviews, Online survey Developers, Mix (58% Developers) 13, 228

[46] Survey Developers, Users 408 (267, 141)
Third Party Updates

[47] Survey Developers 203
Security Tools Adoption

[48] Survey, Interviews, Lab study FindBug users, FindBug users, Students 400, 12, 12

[49] Survey Developers 252

[50] Lab experiment Students 9

[51] Lab experiment Students, Developers 18, 9

[52] Lab study Developers 20

[53] Lab study (Programming) Students 20

[54] Think aloud Students 8

[55] Lab experiment Students 28

[56] Lab study Developers, Students 10 (5, 5)

[57] Field studies Students 72

[58] Interviews, Survey Developers 5, 375

[59] Cognitive walkthrough (CW), CW Security experts, Developers 4, 4

[60] Observations Developers 13

[61] Task based Developers (Academics, Professionals) 18 (9, 9)

[62] Online programming task Developers, Students 40 (16, 24)

[63] Lab experiment (Programming) Students 23

[64] Online between subject Developers 53
Application Programming Interfaces

[65] Interviews Developers 14

[66] Lab experiment, Programming tasks Students 25

[67] Survey Developers 47

[68] Survey Developers 45

[69] Survey, Survey Developers 11, 37

[70] Survey Developers 55

[71] Online between subject Developers 256

[72] Lab experiment (Programming) Students 20

[73] Online programming task Developers (Professionals, Students) 109 (70, 39)
Programming Languages

[74] Lab experiment Developers 27
Testing Assumptions

[75] Online between subject Developers 307

[76] Lab study (Programming) Students 40
A full circle means that the paper has an explicit and clear statement for that criteria, a half circle means that there are some efforts to cover the metric (implied or partially covered),
and an empty circle means the paper does not contain information on the specified criteria.



A. Research Design

Research Questions: Research questions show the pur-
pose and outcome of the research [20] and are a vital compo-
nent of an empirical research [21]. ‘Why’ and ‘how’ questions
are preferred research questions in case studies [22], [77],
such as “How do users respond to and perceive the code
generation and explanation approaches?” [51, p. 3] and “Why
do developers use CI [Continuous Integration]?” [44, p. 1]. Of
our reviewed papers 26 explicitly state their research questions.

Pilots: When dealing with human subjects, it is prudent
to conduct pilot studies before the main experiment [21],
[24]. In software engineering studies that include human
participants, it is advised to do pilot testing to ensure that
software functions as expected during the experiment and that
the tasks are clear [26]. Of our reviewed papers, 12 explicitly
stated that they conducted a pilot study.

Context of the Study: Participants are effected by study
context such as the lab setup, outside events, or their own
expectations. Events occurring at the time of research can also
impact participants’ behaviour [23]. Of our reviewed papers 15
discuss the context of their study such as the time period and
contextual information of the study. Only Sheth et al. gave a
precise time period and elaborated on the events related to the
study that might have influenced the results, i.e. NSA PRISM
scandal in 2013 which could have influenced privacy concerns
of participants during the study [46].

B. Data Collection

Sample and Population: All reviewed papers reported
their sample size. On average, the number of participants
in quantitative studies (surveys) was 195 (range: 9 − 532,
median: 55, std: 165.4), and in qualitative studies (interviews,
lab experiments, observations, and online programming tasks),
it was 38.8 (range: 4− 307, median: 20, std: 58.4).

Providing a detailed demographics of the participants as-
sists the reader in understanding the context and also gives
a better sense of the results. Of our reviewed papers, 12
provide no demographic information about the participants.
The remaining 37 provide a mix of different demographic
information ranging from basic age/gender, to more complex
measurements of experience. In software engineering experi-
ments it is recommend to report experience with programming
languages, technologies related to the tool, industry, and
natural language [26]. For instance, Acar et al. presented
a detailed table for participants’ demographics which gave
information about invited/valid participants and some extra
information from developers’ Github profiles such as public
repositories/gists and followers/followings [75].

Recruitment: Participant recruiting and sampling can
impact generalisability and therefore the types of conclusions
that can be drawn from the research. 29 papers reported their
recruitment strategy clearly. For instance, Acar et al. state how
they recruited and compensated developers. They ask Github
developers to donate their time for research which proved to
be a suitable method of recruiting developers [75].

Ethics: When dealing with human participants in re-
search, it is necessary to treat them ethically. One method
of doing so is to have an ethics review board that reviews and
approves research plans in advance of research [78]. In our
paper set, we notice that several studies do not explicitly report
ethics and only 13 of papers explicitly mention that they have
an ethics approval, e.g. institutional review board approval.
Additionally, two papers mention collecting informed consent
from participants but do not mention ethics approval, we
recognised this as partial fulfilment of ethics criteria.

Mixed Methods: Gathering data from multiple sources,
e.g. interviews and surveys, provides a richer view of the topic
being studied [21]. 13 studies use a mixed method approach.
For instance, Nadi et al.’s results take advantage of two artefact
analyses and two surveys [69].

C. Data Analysis

Data Analysis Process: A detailed report of all steps re-
searchers take increases the validity, reproducibilty, and gives
a chance for other researchers to learn. For example, when the
research involves qualitative analysis, it is often recommended
to have at least two researchers work to analyse the data
because one researcher could bring bias to the results [79].
However, in our sample, in several studies, data analysis is
not described thoroughly, and in a few cases, the authors do
not mention it explicitly at all. For example, Hilton et al. gave
a link to the online codebook [44]. Additionally, 15 studies
publicly shared all their study material. For instance, [44],
[46], [69] provided a link to all their artefacts.

Quotes: Quotes bring evidence to the report [21]. There-
fore if a study contains video, audio or written material from
participants, it is beneficial to add quotes to the report. In
our sample, 34 papers include quotes from participants. For
example, Jain and Lindqvist incorporate relevant quotes in
the text which fosters the results validity and also work as
examples of how authors interpret the interviews [66].

Situate: Proper research highlights its position among
other works, highlighting similarities and differences [21]. 31
of the reviewed papers discuss similar works in background;
however, comparison of the results with other papers is some-
times overlooked. 14 papers compare their work with previous
literature both in the background and discussion section.

Limitations: Study design decisions typically introduce
limitations which need to be reported carefully so that other
researchers can accurately draw conclusions from the re-
search [27]. Bringing such issues to reader’s attention increases
the validity of the study as it gives more context and shows that
the authors are aware of potential threats to their results [25].
Some common limitations in our sample are recruitment, small
sample size, and generalisation of the results. 34 papers have
an explicit section to elaborate on their limitations.

IV. RESEARCH THEME RESULTS

A. Organisations and Context

Developers work within the larger context of organisations,
teams, communities, and cultures. These social structures



impact many elements of development from the types of tools
a developer may be allowed to use by their organisation [30]–
[32] to the assumptions of how to best handle non-functional
requirements (NFRs) [35].

NFRs: Security is often referred to as a NFR in that it
is expected to be included as part of high quality code de-
velopment, but is rarely listed as an explicit requirement [35].
As a result, developers prioritise security below more-visible
functional requirements or even easy-to-measure activities
such as closing bug tracking tickets [30], [35], [37]. Pressure-
related issues like budget and deadlines can also cause security
to be prioritised lower [29]. To quote a participant from Poller
et al. “If security is not on the list [of features], then is it really
worth the time and extra energy to do it?” [35, p. 11]. The
non-functional nature also made security challenging to assign
as a task or decide who’s job it is. This issue extended to
tools such as libraries where developers assumed that issues
like security were already correctly handled [37]. Managers
generally view security as an important NFR, but expressing
security downward is challenging to do without compromising
team autonomy or creating more bureaucracy. A manager
described it as one of the code quality “ilities” along with other
NFRs such as usability, scalability, and maintainability [35].

Some organisations attempt to use external pressures such
as penetration testing to motivate developers and help them
understand the value of security, but without internal sustained
support the motivation tends to lose priority compared to
the functional requirement deadlines imposed on teams [30],
[33], [35]. Similar to developers, managers are asked to make
risky decisions and may choose to release code with known
problems if doing so is aligned with business needs [38].

Clients do not necessarily prioritise security when providing
feature lists unless the software they want has an obvious
security focus, such as financial software, or the contracting
organisation initiates discussions on the topic. This lack of
guidance from clients forced developers to derive security
guidance from the other functional requirements, or initiate a
discussion about security needs with clients themselves [39].

Dedicated Security Teams: One issue is where to locate
security within an organisation. Obviously it would be best if
developers built security in from the start, but doing so requires
a large amount of knowledge which takes time to learn and
it can be difficult to self-motivate, especially when security
is not seen as a measured functional requirement [33], [35].
Developers are also much more likely to learn about security
because they are enthusiastic about it and want to know more,
than if they are task driven [34].

Alternatively, security knowledge can be concentrated in a
testing team or a set of security experts which act as a kind
of roving source of security knowledge. While good at their
jobs, these teams must convince others of the importance of
security to get their changes made, they are also limited in
their throughput and unable to minutely examine all generated
code [38]. External penetration testing organisations can also
be contracted to find security vulnerabilities. While effective
at their primary task of finding problems, these penetration

tests do not necessarily motivate developers to make long-
term changes to their practices [33], [35]. Developers perceive
security as the security team’s problem and do not attempt to
gain knowledge or install support tools on their own [30], [37].

Communication Around Fixing: Communication between
testers, auditors, and developers is also a challenge. Security
auditors consider a large part of their role to be motivating
and convincing developers of the importance of identified
vulnerabilities, especially when the vulnerability produced
no visible problem [38]. Developers have difficulty seeing
how a vulnerability could be practically exploited and find
specific examples of actual attacks motivating [30]. Correcting
vulnerabilities also required understanding it, which takes
communication effort and occasionally results in dedicated
training sessions run by the security team for often-observed
problems [35], [38]. Security experts also struggled with hav-
ing to communicate with many different teams, all of which
have their own priorities and communication cultures [38].

Champions: Security champions are an often unofficial
role held by someone on the development team who has
limited security knowledge but considers security to be im-
portant and is willing to champion it. Champions are useful
in getting security into products in a variety of ways. By
putting champions in teams, managers can positively impact
the security of a product without having to provide top-
down pressure [35]. Security testers valued champions highly
enough to find budget to send them to places like security con-
ferences despite them being located on different teams [38].

Security Oriented Organisations: Structure and practices
become different when companies focus heavily on security.
These companies have a culture of security and they apply it
in every step of development. They do not ignore security, or
sacrifice it for the sake of releasing the product earlier. The
customers in this market also demand security, and security is
part of the culture and mindset of every entity involved in the
process. Third party libraries are a point of discussion, some
companies have to trust them because they are either certified
by standard organisations or have been used by the community
for a while, therefore they can trust them [36].

B. Structuring Software Development

Security Design Patterns: Security design patterns pro-
vide solutions for common problems faced during code design,
such as how to best provide feedback to a user about password
strength. Such patterns are widely used in HCI design, but
currently are not as successful in security. Yskout et al.
conducted a lab study with 32 teams of students, some with
and some without access to the security pattern catalogue.
Surprisingly, participants ended up with similar results in
terms of productivity and security [42]. When the security
pattern catalogue was annotated (security objective, applica-
bility, trade-off labels, and relationships) participants found it
easier to locate a suitable pattern [40].

Software Development Methodologies: There are many
methodologies for how to “best” develop and deploy code as
a holistic process, each of which have positive and negative



impacts on security. Software development methodologies
(SDMs) provide guidance on how to structure code develop-
ment. Some SDMs, such as Agile, are feature focused where
developers prioritise features each week and then work to get
them implemented. The short iterations make it challenging to
do full-stack testing on every iteration [39].

Continuous integration (CI) systems “automate the compi-
lation, building, and testing of software” [44, p. 1] such that
developers are encouraged to integrate their work frequently
allowing for fast testing. CI is good in that it enables frequent
automatic testing of code. However, it also faces practical
problems such as needing to give the automated systems
access to protected machines, the potential that the tested
code is malicious, and the difficulty of allowing developers
to run the same tests on their own computers which have
less access. Hence, CI can introduce complexity and further
security challenges to a project [44].

The fast nature of testing can also lead to prioritisation of
automated tests over more manual tests such as penetration
testing [43]. Manual code reviews can also be expensive and
impractical as it needs several reviewers to look at a piece of
code to find vulnerabilities [41]. While effective, automated
tests can easily overlook unexpected issues, leading security
experts to use both methods when reviewing code [38].

Information Sources: Information sources, such as doc-
umentation, are important to software developers especially
when interacting with topics like APIs [69], [71]. To determine
the effects of various information sources on code security,
Acar et al. conducted a lab study comparing four informa-
tion sources: official documentation only, StackOverflow only,
book only, and free choice [11]. They found that participants
that used StackOverflow were more likely to create functional
code, but less likely to produce secure code.

C. Privacy and Data

Privacy is a complex topic and how people generally
manage it is a well researched topic outside the scope of
our research. However, privacy as a software requirement
has only been marginally studied. Sheth et al. conducted a
survey of Europeans and North Americans and found that
Europeans were significantly less willing to give up privacy
for functionality [46]. They also find that “data privacy is often
an implicit requirement: everyone talks about it, but no one
specifies what it means and how it should be implemented
[...] While almost all respondents agree about the importance
of privacy, the understanding of the privacy issues and the
measures to reduce privacy concerns are divergent” [46, p. 9].

Developers are also not always aware of software pri-
vacy issues, nor do they endanger users’ privacy deliberately.
Balebako et al. showed that only 1/3 of App developers
(n = 228) knew what data was being collected by third-party
tools [45]. Revenue models are a determinant of how much
data developers collect which means if an app’s revenue model
is ad-based, it is likely to collect more data than a paid app.
Company size is also a player in privacy; smaller companies
tend to be less privacy-conscious [30], [45].

D. Third Party Updates

When vulnerabilities are discovered in software, developers
(hopefully) fix them and release an update to their code.
Like any other software, libraries can have vulnerabilities and
updates to address those vulnerabilities. One potential source
of insecure software happens when a library author updates
their code, but developers who use that library do not switch
to the updated library. An analysis of over a million apps
showed that 85.6% of the libraries could be updated by simply
changing the version number of the library [47]. Developers
avoid updating libraries primarily because the update may
break their app or require them to spend time adjusting to
new library structures. When they want to understand potential
library changes, they use change logs [47].

E. Security Tool Adoption

Software is commonly written with the assistance of tools
such as Integrated Development Environments (IDEs). Several
research papers have endeavoured to understand the tool needs
of developers, improve existing tools to better support security,
or build new security-focused tools.

Security tools generally see poor adoption by developers. To
understand why, researchers have surveyed [32], [48], [49],
[58] and interviewed [30], [48], [52], [58], [60] developers
and auditors. They find that organisation and team policies
are a driving factor to tool adoption [58], though many
organisations do not encourage their use [48], [49], larger
organisations make more use of security tools than small
ones [30], and peer tool use positively impacts use [30], [32].
Though, surprisingly, having more concern about security did
not lead to greater security tool usage, but having an academic
background or training in security did [32]. Existing tools
also exhibit pain points by checking for the wrong types of
problems by default, having poor warning messages [48], [58],
interrupting work flow [52], [58], [60], having too many false
positives [52], [58], not providing enough support for team
work, and integrating poorly with IDEs [52]. When using
tools, developers want to know about the type of attacks,
available solutions, vulnerabilities, and flow of data in their
programs [56]. Visualising tool output also helps [59].

Several works focus on the creation and evaluation of
specific tools which are often built as plugins for popular IDEs.
FindBugs is a static analysis tool that looks for coding defects
by analysing software in the abstract, allowing it to identify
issues at the logical level. It has been the subject of multiple
research projects which considered both the context of use and
usability needs in its design and evaluation [48], [49], [56].
New tools which focus on usability, also use it as a staring
point and a basis for comparison [59].

The Application Security IDE (ASIDE) is a static analysis
Eclipse plugin helps developers find potentially vulnerable
web application code “in situ” as they code, similar to the un-
derline in a word processing spell checker [50]. The initial user
study with students had mixed results [50], but a larger follow-
on study found students using ASIDE improved in their post-
usage code security knowledge [53]. Another ASIDE study



compared giving graduate students auto generated code fixes
to giving them explanations of identified vulnerabilities [51].
They found that students given code solutions were more
likely to implement them. ASIDE was then further improved
to allow developers to annotate security-critical code so that
the tool could provide better analysis [54], [55]. However, they
found that student participants did not have enough security
knowledge to accurately provide the annotations.

Two other studies also proposed and tested fast-feedback
tools. CHEETAH provides feedback-on-compile warnings to
developers using an IDE static taint analysis plugin [61].
Their study compared their feedback-on-compile approach to
feedback-on-request and found that developers both preferred
the feedback-on-compile approach and that they fix bugs
faster. However, the feedback-on-request also introduced a
time delay, possibly confounding results. FixDroid is an IDE
plugin for Android developers that highlights insecure code,
and on mouse over provides a short explanation and recom-
mendation to fix the problem [62]. They find that developers
using FixDroid’s feedback produced more secure code.

Gorski et al. designed an online programming experiment
(study design modelled on [71]) with Python developers to
find out whether showing developers API-integrated security
warnings would help them with security APIs [64]. These
security warnings include a warning and an example of a
secure code snippet. Developers who had access to warnings
and code examples created more secure code compared to who
did not have access to warnings.

Education: We did not explicitly search for educational
approaches in security; however, three paper showed up in
our results. Tabassum et al. investigated two approaches to
teaching security and secure coding, teaching assistant vs.
tools [63]. Educational Security in the IDE (ESIDE) is an
Eclipse IDE plugin, which provide fast feedback warnings,
detailed explanations, and suggested remediation code. The
user study had some serious limitations, but generally found
that students found ESIDE interesting, used the suggested code
samples, but did not engage with the educational information
and did not try and fix errors on their own [63]. Two other
papers look at the potential benefits of a similar tool in
teaching secure coding [53], [57].

F. Application Programming Interfaces (APIs)

Considering Options: While designing and coding, de-
velopers must make decisions about many features, including
security and privacy. Many external pressures, like deadlines
often overload developers, quality and functionality and secu-
rity is often not a part of developers’ decision-making process.
Security is often overlooked because it needs extra effort
and it is ‘blind spot’ in developers mindset [67]. API blind
spots are the points where developers incorrectly use an API,
often because they just trust the API to do the right thing
without doing additional checks [73]. However, if developers
are nudged with the security, they change their programming
approach and consider security and secure programming [67],
[72]. The involvement of customers in security also impacts

decision making, and while customers are often unclear about
their security requirements, developers felt that customer en-
gagement on security topics was helpful [29], [39].

The features provided by readily available APIs can also
impact security and privacy choices of developers. In a case
of geo-location libraries, developers who have access to a
library with privacy-preserving options are more willing to
use coarse location information over those with only access to
the standard library [66].

Testing the Usability of Security APIs: Security APIs
(SecAPIs), as a subset of APIs, are built to help developers
with security concepts such as encryption and authentication.
They offer a level of abstraction and work as a layer between
developers and the low-level details that developers may get
wrong on their own. SecAPIs broadly fall into two categories,
security primitives which required security knowledge to un-
derstand and security controls which were found to be a more
appropriate abstraction level for developers. Unlike other APIs,
SecAPIs do not well support learning-by-doing [70].

Acar et al. compared the usability of five Python cryp-
tographic APIs and found that good documentation with
examples is more helpful to developers than just having a
simple API [71]. They also found that when developers do not
find a solution easily, they tend to look online, and typically
find an insecure solution on StackOverflow. Resulting in the
concerning situation where developers think they have a secure
solution, but actually have an insecure one. Another study
similarly found that developers struggle to use SecAPIs finding
them overly complex for basic tasks and they want better
documentation and higher abstraction levels [69].

Transport Layer Security (TLS) and its predecessor Secure
Sockets Layer (SSL) are common protocols to encrypt data in
transit. Unfortunately, developers have difficulty using these
protocols correctly [65]. Fahl et al. tried notifying app develop-
ers of TLS-related vulnerabilities in their apps [65]. However,
after three months 34.6% had not made corrections. Similarly,
Oltrogge et al. found that developers found TLS pinning too
complex of a topic to use [68].

G. Programming Languages

Only one paper conducted a laboratory study of the relative
usability of different programming languages (PLs). Undoubt-
edly more such studies exist based in artefact analysis, but
Prechelt’s study is notable in that: 1) all the development teams
had the same brief, 2) PLs were assigned (Java, PHP, Pearl)
and 3) developers had two days to complete the brief [74].
Theoretically, this design allows for a more causation-style
analysis than artefacts provide. However, they find no defini-
tive links between PLs and security, suggesting that security
issues may be more develop-based than language-based.

H. Testing Assumptions

While several developer studies use students as their sub-
jects, it is important to know if this group is representative of
professional developers. In a Github sample, status (being a
student or a professional) and security background were not a



significant factor in terms of the security and functionality of
the final code, and the only distinguishing feature was years
of experience [75]. In contrast, a different study observed no
impact of years of experience on security [41], [76]. These
studies provide an initial suggestion that students might be
representative of developers with a similar level of experience.

Naiakshina et al. ran a lab study (similar to their 2017
study [72]) with forty CS students to find out if priming
effected the production of secure code [76]. In their 2017
study they used an interview to gather data from partici-
pants, and in their 2018 study they used a survey instead of
interviews. Results show that interviews generated valuable
results, particularly in developer studies because this field is
still at its early stages, so interviews allow for more flexibility
in data collection. An interesting side takeaway is that PL
experience is not a deciding factor in developers security
which contradicts with findings in [75]. Another contradictory
result is around copy/pasting behaviour. Acar et al. show that
copy/pasting results in insecure code [11], but [76] observed
that using copy/paste tended to result in more secure code.

V. DISCUSSION

A. Methodology and Ability to Generalise

Developers are a challenging group to study because their
work is undertaken over an extended time frame, collaborative,
involves multiple stake holders, and requires decision making
based on a combination of prior experience and online re-
search. These features make it challenging to create a lab or
online study that properly replicates the experience of software
development without making it long and expensive. To handle
these problems we see a heavy reliance on retrospective and
opinion studies like surveys and interviews where developers
can reflect on past work. For lab studies involving tools, we
see efforts to use code that the developer is already familiar
with possibly as a way to better evaluate the tool [53], [62].
However, in our opinion, some of these efforts worked poorly,
such as asking professional developers to write a class example
as a way of getting them to write something small, but as a
side effect they also explicitly left out some checks because
adding them would be confusing to students [51].

Length of the study was also a tricky subject. Longer lab
studies took as much as 3 days [74] and shorter ones took as
little as 15−20 minutes [63]. Most of the ASIDE studies lasted
for about 3 hours and had developers use their coursework as
the code base to make starting easier. Our impression from
reading many such papers, is that studies that allowed less
than 3 hours tended to suffer from the developers not having
enough time to really get involved with the programming or
interact with the tool in a realistic way.

As a field, DCS is relatively young and many of the method-
ologies have not caught up to the standards of HCI research.
For example, several methodologies mentioned conducting
a think aloud study where they interrupted the participant
whenever they did something interesting. While that is an
acceptable approach in industrial research where the goal is to
find big problems, in academic HCI research interrupting the

participant mid-task is known to impact their behaviour and
disrupt their work flow which invalidates later results. It was
also surprising how few studies attempted to compare their
results to a control or similar tool on the same tasks. Acar et
al. did this by making the control be a book [11]. But many
other studies only tested their new tool and made no attempt
to even compare against other tools on the same task. Much
less base their tasks to other study setups.

B. Research Gaps

We identified several research gaps while reviewing that we
feel are important to fill, though this list is hardly exhaustive.

a) When to Interrupt the User: The majority of the
tools in our reviewed papers took the view that providing
fast feedback in-situ was a good thing because it would give
developers a chance to make changes right away. However,
this assumption is only weakly tested in [61] which looked at
feedback-on-compile vs. feedback-on-request. But given their
confounds, the question is still open. The assumption is also
at odds with how humans write text and when it is best to
interrupt them doing so [80]. Best practice in that area suggests
waiting till a user has reached the end of a text passage before
interrupting with feedback. But the equivalent of finishing a
text passage in code is not necessarily clear at this stage.

b) Are Students Similar to Professional Developers?:
Many papers use students as participants under the assumption
that they are similar to real software developers (and easier to
find). However, there were only two studies [75], [76] in our
set that compared students to developers and their findings
disagree on several points. Shortly after we completed our
review, Naiakshina et al. released a new paper [81] which
roughly duplicated their earlier work on password storage con-
ducted with student participants [72]. They find that students
and developers have difficulty securing passwords and that
paying more for developers does not improve the situation.
While this lends some support to the view that students are
similar to professional developers, the issue is still open.

c) Tools: While there is abundance of work in secu-
rity tool adoption (Section IV-E), the work focuses on only
a few IDE plugins, yet several other security plugins are
available [82] which could benifit from usability analysis. For
example, SpotBugs is a successor of FindBugs, and comparing
it with FindBugs [83] could be quite interesting, especially
given that most papers focus on only a single tool. In relation
to Section IV-A, there is also a question of how these tools,
e.g. static analysis tools, integrate with developers’ workflows,
and how these tools can be used in organisations.

d) Testing Support for Team Development: No study in
our review tried simulating team or collaborative aspects of
programming. Several studies commented on the frustrations
developers have with tools that do not well support team work.
While this concern is minimally elaborated on, issues like
having to share the particulars of a code problem with the
security team or needing to add output to a bug tracker come
up elsewhere. It would be interesting to see studies of how



developers communicate security issues in teams and the types
of details that need to be shared and tracked.

e) Learning Support: Due to online resources having
a negative impact on code security [11], offering reliable
documentation to developers in real-time as an IDE plugin
could be beneficial. Tools such as ESIDE [63] and Fix-
Droid [62] do provide educational feedback which tends to
be ignored in studies by task-driven developers, and example
solutions which developers do appear to use. However, both
of these works are initial case studies and do not look at
different warning texts, styles or even the appropriate length of
education to provide to developers. Links to “good” external
resources are also not tried.

f) Privacy Support: Privacy features can be complicated
to define and include in software requirements. Efforts to bring
privacy into design [84], [85] are currently under research
though more research is required as it is a hot-button issue,
especially with the recent passing of GDPR in the EU [86].
Privacy perceptions and security mindsets effect decisions
(see [87] for average users’ mental models in security). This
correlation becomes more relevant when developers are re-
sponsible for building tools that can impact people’s day to
day lives. More research is needed to find out privacy mindsets
of software developers and how to support them in developing
privacy aware tools for the general public [88], [89]. Cultural
differences are another major theme here. International compa-
nies treat the data and privacy of users around the globe based
on their home country. However, a single geographical area is
not a representative sample of all countries [90]. Hence, more
research is needed to learn about how software developers and
companies can adapt their technologies to various cultures.

VI. CONCLUSIONS

This paper reports a systematic literature review of 49
research papers that are DCS related. Every study has at least
one user study of software developers. We discuss our sample
set from two viewpoints, methodology and findings. In the
former, we look at research design, data collection, and data
analysis of papers as a sample set. We observed similar issues
in DCS research addressed in the literature [25], [26]. In
the latter, we synthesis outcomes of all studies. Eight themes
emerge from our dataset: organisations and context, structuring
software development, privacy and data, third party updates,
security tool adoption, application programming interfaces,
programming languages, and testing assumptions. Our results
facilitate entry of early researchers to the field of DCS and
assist research veterans in discovering areas that are not yet
researched thoroughly and need more investment.

ACKNOWLEDGEMENT

We thank Kholoud Althobaiti, Tariq Elahi, Adam Jenkins,
Maria Wolters, and everyone associated with the TULiPS-Lab
at the University of Edinburgh for helpful discussions and
feedback. We also thank the anonymous reviewers and our
shepherd whose comments helped improve the paper greatly.
This work was sponsored in part by Microsoft Research
through its PhD Scholarship Programme.

REFERENCES

[1] K. Munro. (2015) Hacking kettles & extract-
ing plain text wpa psks. yes really! [On-
line]. Available: https://www.pentestpartners.com/security-blog/
hacking-kettles-extracting-plain-text-wpa-psks-yes-really/

[2] G. Liang et al., “The 2015 Ukraine Blackout: Implications for False
Data Injection Attacks,” IEEE Transactions on Power Systems, 2017.

[3] G. Martin et al., “Cybersecurity and healthcare: how safe are we?” BMJ,
2017.

[4] A. Van der Stock et al., “Top 10 Most Critical Web Application Security
Risks,” The OWASP Foundation, Tech. Rep., 2017.

[5] Veracode, “State of Software Security,” Veracode, CA Technologies,
Tech. Rep., 2018. [Online]. Available: https://www.veracode.com/
state-of-software-security-report/

[6] M. Egele et al., “An empirical study of cryptographic misuse in android
applications,” in CCS. ACM, 2013.

[7] A. Adams et al., “Users Are Not The Enemy,” in Commun. ACM, 1999.
[8] M. A. Sasse et al., “Usable security: Why do we need it? How do we

get it?” in Security and Usability Designing Secure Systems that People
Can Use. O’Reilly, 2005.

[9] G. Wurster et al., “The Developer is the Enemy,” in Proc. of the 2008
NSPW. ACM, 2008.

[10] M. Green et al., “Developers are Not the Enemy!: The Need for Usable
Security APIs,” IEEE Security Privacy, vol. 14, no. 5, Sep. 2016.

[11] Y. Acar et al., “You Get Where You’re Looking for: The Impact of
Information Sources on Code Security,” in IEEE SP, 2016.

[12] O. Pieczul et al., “Developer-centered Security and the Symmetry of
Ignorance,” in Proc. of the 2017 NSPW. ACM, 2017.

[13] B. A. Myers et al., “Programmers Are Users Too: Human-Centered
Methods for Improving Programming Tools,” Computer, 2016.

[14] A. J. Ko et al., “The State of the Art in End-user Software Engineering,”
ACM Comput. Surv., vol. 43, no. 3, Apr. 2011.

[15] L. S. Amour et al., “Improving Application Security through TLS-
Library Redesign,” in Security, Privacy, and Applied Cryptography
Engineering. Springer, 2015.

[16] O. Tripp et al., “ALETHEIA: Improving the Usability of Static Security
Analysis,” in CCS. ACM, 2014.

[17] G. Pellegrino et al., “jÄk: Using Dynamic Analysis to Crawl and Test
Modern Web Applications,” in Research in Attacks, Intrusions, and
Defenses. Springer, 2015.

[18] J. Wäyrynen et al., “Security Engineering and eXtreme Programming:
An Impossible Marriage?” in Extreme Programming and Agile Methods
- XP/Agile Universe. Springer, 2004.

[19] K. Vaniea et al., “Tales of software updates: The process of updating
software,” in CHI, 2016.

[20] C. Okoli, “A Guide to Conducting a Standalone Systematic Literature
Review,” CAIS, 2015.

[21] L. Dub et al., “Rigor in Information Systems Positivist Case Research:
Current Practices, Trends, and Recommendations,” MIS Quarterly, 2003.

[22] P. Runeson et al., Case study research in software engineering: Guide-
lines and examples. John Wiley & Sons, 2012.

[23] K. Krol et al., “Towards robust experimental design for user studies in
security and privacy,” in LASER, 2016.

[24] R. Maxion, Dependable and Historic Computing. Springer, 2011, ch.
Making Experiments Dependable.

[25] K. P. L. Coopamootoo et al., Cyber Security and Privacy Experiments:
A Design and Reporting Toolkit. Springer, 2018.

[26] A. J. Ko et al., “A practical guide to controlled experiments of soft-
ware engineering tools with human participants,” Empirical Software
Engineering, 2015.

[27] S. Schechter, “Common Pitfalls in Writing about Security and Privacy
Human Subjects Experiments, and How to Avoid Them,” Microsoft,
Tech. Rep., January 2013.

[28] C. Courage et al., “Appendix F - Affinity Diagram,” in Understanding
Your Users, ser. Interactive Technologies. Morgan Kaufmann, 2005.

[29] Jing Xie et al., “Why do programmers make security errors?” in
VL/HCC, 2011.

[30] S. Xiao et al., “Social Influences on Secure Development Tool Adoption:
Why Security Tools Spread,” in CSCW, 2014.

[31] J. Witschey et al., “Technical and Personal Factors Influencing Devel-
opers’ Adoption of Security Tools,” in ACM Workshop on SIW, 2014.

[32] ——, “Quantifying Developers’ Adoption of Security Tools,” in ES-
EC/FSE, 2015.

https://www.pentestpartners.com/security-blog/hacking-kettles-extracting-plain-text-wpa-psks-yes-really/
https://www.pentestpartners.com/security-blog/hacking-kettles-extracting-plain-text-wpa-psks-yes-really/
https://www.veracode.com/state-of-software-security-report/
https://www.veracode.com/state-of-software-security-report/


[33] S. Türpe et al., “Penetration Tests a Turning Point in Security Practices?
Organizational Challenges and Implications in a Software Development
Team,” in SOUPS, 2016.

[34] C. Weir et al., “How to Improve the Security Skills of Mobile App
Developers? Comparing and Contrasting Expert Views,” in SOUPS,
2016.

[35] A. Poller et al., “Can Security Become a Routine?: A Study of
Organizational Change in an Agile Software Development Group,” in
CSCW, 2017.

[36] J. M. Haney et al., “”We make it a big deal in the company”: Security
Mindsets in Organizations that Develop Cryptographic Products,” in
SOUPS, 2018.

[37] H. Assal et al., “Security in the Software Development Lifecycle,” in
SOUPS, 2018.

[38] T. W. Thomas et al., “Security During Application Development: An
Application Security Expert Perspective,” in CHI. ACM, 2018.

[39] S. Bartsch, “Practitioners’ Perspectives on Security in Agile Develop-
ment,” in ARES, 2011.

[40] K. Yskout et al., “Does Organizing Security Patterns Focus Architectural
Choices?” in ICSE, 2012.

[41] A. Edmundson et al., “An Empirical Study on the Effectiveness of
Security Code Review,” in ESSoS, 2013.

[42] K. Yskout et al., “Do Security Patterns Really Help Designers?” in
ICSE, 2015.

[43] A. A. Ur Rahman et al., “Software Security in DevOps: Synthesizing
Practitioners’ Perceptions and Practices,” in CSED, 2016.

[44] M. Hilton et al., “Trade-offs in Continuous Integration: Assurance,
Security, and Flexibility,” in ESEC/FSE, 2017.

[45] R. Balebako et al., “The Privacy and Security Behaviors of Smartphone
App Developers,” in Proc. of Workshop on Usable Security, 2014.

[46] S. Sheth et al., “Us and Them: A Study of Privacy Requirements Across
North America, Asia, and Europe,” in ICSE, 2014.

[47] E. Derr et al., “Keep Me Updated: An Empirical Study of Third-Party
Library Updatability on Android,” in CCS. ACM, 2017.

[48] N. Ayewah et al., “A report on a survey and study of static analysis
users,” in Workshop on Defects in large software systems, 2008.

[49] ——, “Using Static Analysis to Find Bugs,” IEEE Software, 2008.
[50] J. Xie et al., “ASIDE: IDE support for web application security,” Proc.

of the 27th Annual Computer Security Applications Conference, 2011.
[51] ——, “Evaluating Interactive Support for Secure Programming,” in CHI,

2012.
[52] B. Johnson et al., “Why don’t software developers use static analysis

tools to find bugs?” in ICSE, 2013.
[53] J. Zhu et al., “Interactive support for secure programming education,”

in SIGCSE. ACM Press, 2013.
[54] ——, “Supporting secure programming in web applications through

interactive static analysis,” J. Adv. Res., 2014.
[55] T. Thomas et al., “A study of interactive code annotation for access

control vulnerabilities,” in IEEE VL/HCC, 2015.
[56] J. Smith et al., “Questions Developers Ask While Diagnosing Potential

Security Vulnerabilities with Static Analysis,” in ESEC/FSE, 2015.
[57] M. Whitney et al., “Embedding Secure Coding Instruction into the IDE:

A Field Study in an Advanced CS Course,” in SIGCSE, 2015.
[58] M. Christakis et al., “What developers want and need from program

analysis: an empirical study,” in ASE, 2016.
[59] H. Assal et al., “Cesar: Visual representation of source code vulnerabil-

ities,” in IEEE VizSec, 2016.
[60] T. W. Thomas et al., “What Questions Remain? An Examination of How

Developers Understand an Interactive Static Analysis Tool,” SOUPS,
2016.

[61] L. N. Q. Do et al., “Just-in-time static analysis,” in Proc. of ISSTA, 2017.
[62] D. C. Nguyen et al., “A Stitch in Time: Supporting Android Developers

in Writing Secure Code,” in CCS, 2017.
[63] M. Tabassum et al., “Comparing Educational Approaches to Secure

Programming : Tool vs. TA,” SOUPS, 2017.
[64] P. L. Gorski et al., “Developers Deserve Security Warnings, Too: On the

Effect of Integrated Security Advice on Cryptographic API Misuse,” in
SOUPS, 2018.

[65] S. Fahl et al., “Rethinking SSL Development in an Appified World,” in
CCS, 2013.

[66] S. Jain et al., “Should I Protect You? Understanding Developers’
Behavior to Privacy-Preserving APIs,” in Workshop on USEC, 2014.

[67] D. Oliveira et al., “It’s the psychology stupid: how heuristics explain
software vulnerabilities and how priming can illuminate developer’s
blind spots,” in ACSAC, 2014.

[68] M. Oltrogge et al., “To Pin or Not to Pin Helping App Developers Bullet
Proof Their TLS Connections,” USENIX Security, 2015.

[69] S. Nadi et al., “Jumping Through Hoops: Why Do Java Developers
Struggle with Cryptography APIs?” in ICSE. ACM, 2016.

[70] L. Lo Iacono et al., “I Do and I Understand. Not Yet True for Security
APIs. So Sad,” in European Workshop on Usable Security, 2017.

[71] Y. Acar et al., “Comparing the Usability of Cryptographic APIs,” in
IEEE Symposium on Security and Privacy, 2017.

[72] A. Naiakshina et al., “Why Do Developers Get Password Storage
Wrong?: A Qualitative Usability Study,” in CCS, 2017.

[73] D. S. Oliveira et al., “API Blindspots: Why Experienced Developers
Write Vulnerable Code,” in SOUPS, 2018.

[74] L. Prechelt, “Plat forms: A Web Development Platform Comparison by
an Exploratory Experiment Searching for Emergent Platform Proper-
ties,” IEEE Transactions on Software Engineering, 2011.

[75] Y. Acar et al., “Security Developer Studies with GitHub Users: Explor-
ing a Convenience Sample,” SOUPS, 2017.

[76] A. Naiakshina et al., “Deception Task Design in Developer Password
Studies: Exploring a Student Sample,” in SOUPS, 2018.

[77] R. K. Yin, Case study research and applications: Design and methods.
Sage Publications, 2018.

[78] M. Saunders et al., Research Methods for Business Students. Prentice
Hall, 2012.

[79] J. Lazar et al., “Interviews and focus groups,” in Research Methods in
Human Computer Interaction (2nd Edition). Morgan Kaufmann, 2017.

[80] L. Flower et al., “A cognitive process theory of writing,” College
composition and communication, 1981.

[81] A. Naiakshina et al., ““if you want, i can store the encrypted password.”
a password-storage field study with freelance developers,” in CHI, 2018.

[82] A. Z. Baset et al., “IDE Plugins for Detecting Input-Validation Vulner-
abilities,” in IEEE Security and Privacy Workshops, 2017.

[83] J. Smith et al., “How Developers Diagnose Potential Security Vulner-
abilities with a Static Analysis Tool,” IEEE Transactions on Software
Engineering, 2018, Early Access version.

[84] M. Langheinrich, “Privacy by Design-Principles of Privacy-Aware Ubiq-
uitous Systems,” in Ubiquitous Computing, 2001.

[85] I. Hadar et al., “Privacy by designers: software developers’ privacy
mindset,” Empirical Software Engineering, 2018.

[86] EU GDPR Information Portal. [Online]. Available: https://www.eugdpr.
org/

[87] R. Wash, “Folk models of home computer security,” in SOUPS, 2010.
[88] A. Senarath et al., “Why Developers Cannot Embed Privacy into

Software Systems?: An Empirical Investigation,” in EASE, 2018.
[89] A. R. Senarath et al., “Understanding user privacy expectations: A

software developer’s perspective,” Telematics and Informatics, 2018.
[90] Y. Sawaya et al., “Self-Confidence Trumps Knowledge: A Cross-

Cultural Study of Security Behavior,” in CHI. ACM, 2017.

https://www.eugdpr.org/
https://www.eugdpr.org/

	Introduction
	Systematisation Approach
	Methodology Results
	Research Design
	Data Collection
	Data Analysis

	Research Theme Results
	Organisations and Context
	Structuring Software Development
	Privacy and Data
	Third Party Updates
	Security Tool Adoption
	Application Programming Interfaces (APIs)
	Programming Languages
	Testing Assumptions

	Discussion
	Methodology and Ability to Generalise
	Research Gaps

	Conclusions
	References

