
PhishCoder: Efficient Extraction of Contextual
Information from Phishing Emails

Tarini Saka1[0000−0003−3936−6766], Kami Vaniea2[0000−0001−8042−3342], and
Nadin Kökciyan1[0000−0002−2653−6669]

1 School of Informatics, University of Edinburgh, Edinburgh, UK
tarini.saka@ed.ac.uk, nadin.kokciyan@ed.ac.uk

2 University of Waterloo, Waterloo, Canada
kami.vaniea@uwaterloo.ca

Abstract. Phishing has emerged as one of the most widespread and
expensive types of cyber threats, posing significant challenges to indi-
viduals and organizations worldwide. In response to the evolving threat,
security workers are integrating AI and ML algorithms to mitigate phish-
ing attacks automatically. Although email text is a crucial element in
identifying phishing attacks, traditional text-embedding techniques face
challenges due to variations in text length, structure, and the inability
to capture context effectively. In this paper, we introduce PhishCoder, a
novel framework designed to extract contextual information from phish-
ing emails. Our focus is on human-centric features, which are often over-
looked in traditional approaches, as they are the features that users
notice when evaluating a potentially suspicious email. By fine-tuning
four transformer-based models, we accurately extract seven descriptive
features from phishing email texts. Our findings indicate that language
models provide a promising method for extracting contextual informa-
tion from phishing emails. This approach offers researchers and security
workers a whole new set of features that would be valuable in combating
phishing attacks and developing effective mitigation tools.

Keywords: Phishing, Context, Language Models, Email Security, Human-
Centered Artificial Intelligence

1 Introduction

Phishing is a cyber-attack where an attacker sends emails impersonating rep-
utable sources to deceive recipients into providing sensitive information such
as usernames, passwords, or credit card numbers. Phishing is one of the most
pervasive and expensive types of cyber threats, posing significant challenges to
individuals and organizations worldwide. Statistics highlight the magnitude of
the phishing epidemic, with reports indicating a relentless surge in both the fre-
quency and complexity of such attacks. The Anti-Phishing Working Group (APWG)
observed almost five million phishing attacks in 2023, the worst year for phishing
on record [4]. IBM’s Cost of a Data Breach 2022 report [12] rates phishing as

2 T. Saka et al.

the second-most common cause of data breaches (up from fourth the previous
year) and the most expensive, costing victims $4.91 million on average.

In response to this escalating threat, security workers across the world are
trying to develop effective cybersecurity solutions, including integrating Arti-
ficial Intelligence (AI) and Machine Learning (ML) algorithms. An approach
that shows promise. According to an IBM research survey, organizations that
used AI and automation in their approach experienced, on average, a 108-day
shorter time to identify and contain a breach and also reported $1.76 million
lower data breach costs compared to organizations that did not use such capa-
bilities [12]. Khonji et al. [15] provide a high-level overview of various categories
of phishing mitigation techniques. They reviewed four types of software detec-
tion solutions for phishing: blacklists, rule-based heuristics, visual similarity, and
machine-learning-based classifiers. They found that machine-learning-based de-
tection techniques achieve high accuracy in analyzing similar data parts com-
pared to rule-based heuristic techniques.

Despite their advantages ML algorithms face specific challenges, notably in
selecting the appropriate feature set and feature representation. In the case of
phishing emails, the appropriate feature set requires consideration of all the email
parts such as the header, body, attachments, and URLs included in the email
body. The body text is especially crucial for phishing mitigation as it provides the
context for the email. Several studies have demonstrated the efficiency of using
email body text to enhance the performance of phishing classifiers [1,31,26,2,30].
Recently there has been a shift towards using advanced text embedding tech-
niques to extract contextual and semantic information from email text for ma-
chine learning tasks like classification and clustering [26,27,6,29]. However, the
unstructured nature of email body text and the variation in language, gram-
mar, length, and layout pose significant challenges for machine interpretation.
Efficiently representing the text can be difficult due to this variation. Text-
embedding techniques face common problems such as the absence of sufficient
context, the presence of generic text, and implied threats or actions. Further-
more, while text embeddings can effectively capture semantic relationships, they
operate as “black boxes”, making it difficult to understand how they arrive at
specific decisions. This opacity can be problematic when justifying the reasons
behind flagging an email as potential phishing and limits error diagnoses.

To address the range of challenges, it is necessary to establish a more concise
and standardized representation of phishing email text that prioritizes human-
oriented features to enhance explainability. We propose a hybrid approach that
utilizes language models to extract and summarize contextual information into
a concise, interpretable format, which then serves as input for algorithms. This
method not only improves the representation of the email text but also intro-
duces a layer of explainability to the system. The final classification or clustering
decisions are based on a set of human-interpretable features, making it easier to
understand and justify the reasons behind flagging an email as malicious or
benign.

PhishCoder 3

In this paper, we investigate the use of pre-trained language models to ex-
tract categorical and descriptive features from phishing emails. To achieve this,
we propose the PhishCoder framework, which combines text classification and
text extraction tasks to obtain the categorical features. Based on our previous re-
search [25], we included seven categorical features in PhishCoder that effectively
define the context of an email. These features were identified based on the factors
that influence human decision-making when assessing suspicious emails. We use
a small set of labeled data (∼500 emails) to fine-tune four transformer-based lan-
guage models to achieve these tasks. Our findings indicate that language models
offer a promising method for extracting contextual information from phishing
emails, and could be valuable in combating phishing attacks.

In summary, we make the following contributions:

1. We introduce PhishCoder to capture the contextual nature of phishing emails
by considering human-centric features.

2. By using real-world datasets, we conducted experiments with four pre-trained
language models to demonstrate their effectiveness in extracting categorical
features that represent phishing emails in an interpretable way.

3. We provide a comparative analysis of the four models for information ex-
traction. Additionally, we present a fine-tuned multi-task classifier to simul-
taneously perform the four text classification tasks.

The outline of the paper is as follows. Section 2 presents a background and
the related work on the topic. Section 3 describes in detail our motivation and
use-cases for developing PhishCoder. Section 4 presents the sevev categorical and
descriptive features extracted by PhishCoder. Section 5 outlines the proposed
approach and explains each step in the fine-tuning process. We discuss the results
of the experiments in Section 6. Furthermore, in Section 7 we present a multi-
headed classification model we trained to perform all four classification tasks
simultaneously. We conclude with a conclusion, and future work 8.

2 Background and Related Work

In this section, we introduce the relevant concepts about language models and
tools for information extraction and discuss related work on the topic.

2.1 Phishing Email Text

Phishing email text plays a crucial role in detecting and mitigating phishing at-
tacks as it contains information or context about the underlying scam. Security
systems often analyze email content to recognize keywords and phrases com-
monly associated with phishing, such as urgent calls to action or requests for
sensitive information. Many phishing email detection techniques use text-based
features and machine learning algorithms to distinguish phishing from legiti-
mate emails [6,14,33,34]. Salloum et al. [28] conducted a systematic literature
review of 100 research articles published between 2006 and 2022 on phishing

4 T. Saka et al.

email detection using NLP techniques and found that TF-IDF (term frequency-
inverse document frequency) and word embeddings are the most frequently used
text representation techniques. Email text also plays a crucial role in identifying
phishing email campaigns, groups of emails sent from a common source as part
of a mass attack with similar tactics and objectives [26,3,11]. Analyzing the lan-
guage, content, and structure of emails can help detect recurring patterns and
consistent themes. Furthermore, email text is the most commonly used input
feature for profiling phishing attacks [10,36]. Profiling involves the examination
of phishing emails to understand the modus operandi of attackers, allowing for
the creation of profiles to better detect future phishing attempts.

Although phishing email text is a crucial feature, it does pose certain chal-
lenges to security researchers. The inherently unstructured nature of email body
text, coupled with significant variations in language, grammar, and layout, presents
significant challenges for machine interpretation. Traditional text-embedding
techniques like TF-IDF face problems such as the absence of sufficient context 1b,
the presence of generic text 1a, implied threats or actions rather than explicit
text, and variation in the length and structure of the text 1. Automated systems
tasked with analyzing email content must contend with these complexities. For
instance, Figure 1 shows two phishing emails, taken from the Nazario Phishing
Corpus [21]. Both emails claim to be from financial organizations about a state-
ment or problem, and both ask the user to download an attachment. However,
the first figure 1a is a sophisticated phishing attempt claiming to be from Ned-
bank, a South Africa-based bank. It has a well-designed layout with the right
logos and references to legitimate organizations like the World Wildlife Fund.
The wording and URLs appear to be legitimate and contain no obvious signs
of malicious intent. In contrast, the second email 1b claims to be from USAA,
a United States-based financial organization, but it has minimal text and no
useful information or context, again posing a challenge for the machines. With
advancements in NLP, there has been a recent shift towards using word embed-
ding techniques to extract contextual and semantic information from email text
for machine learning tasks like classification and clustering [34,27,6,29].

2.2 Information Extraction

Information Extraction (IE) in NLP involves automatically extracting struc-
tured information, such as entities, relationships, and events, from unstructured
text [7]. IE techniques are crucial for transforming raw text into usable data for
various applications, such as knowledge base construction and semantic search.
Such methods have been previously used for other email related tasks. Laclavík et
al. explore a lightweight approach to enterprise email communication analysis
and information extraction [16]. They tested their approach on several small and
medium enterprises (SMEs) and claimed that it was promising for enterprise in-
teroperability and collaboration in SMEs that depend on emails to accomplish
their daily business tasks. Mahlawi et al. proposed a novel process to extract
structured data from emails pertaining to a domain, involving three phases:
data cleaning, extraction (including keyword, sentiment, and entity extraction),

PhishCoder 5

(a) Longest Email (b) Shortest Email

Fig. 1: An example of the variation in email structure observed in our dataset.

and consolidation, to facilitate easier management and analysis of knowledge
for better decision-making in large industries [20]. Listík et al. [18] developed
an algorithm that utilizes named entity recognition (NER) to detect company
names and compare URLs in the email content against a company URL profile
built from historical legitimate traffic. Their method achieves high accuracy on
live email traffic.

2.3 Role of language models

The recent advancements in Natural Language Processing (NLP) and Language
Models have created a significant evolution in the field of information extrac-
tion. Language models (LMs) are computational models designed to understand,
generate, and manipulate human language. They learn the statistical patterns
and structures in a corpus of text, enabling them to predict the likelihood of
a sequence of words [5]. Transformers, a breakthrough architecture in language
models, leverages self-attention mechanisms to process words in parallel, lead-
ing to significant improvements in tasks such as translation, summarization, and
text generation [32]. Transformer-based architectures such as BERT (Bidirec-
tional Encoder Representations from Transformers) [9] and GPT (Generative
Pre-trained Transformer) [22] have achieved unprecedented levels of accuracy
and contextual understanding. The fine-tuning capabilities of these models al-
low for customization to specific tasks and domains, further enhancing their
applicability in information extraction tasks across various industries and do-
mains. For instance, Dagdelen et al. demonstrate how pretrained large language
models (GPT-3, Llama-2) can be fine-tuned to extract structured knowledge
from records of complex scientific text [8]. Sage et al. demonstrate that language
models like LayoutLM, a pre-trained model recently proposed for encoding 2D

6 T. Saka et al.

documents, are effective for extracting information from business documents.
Their model achieves high sample efficiency in data-constrained settings, reach-
ing over 80% performance with as few as 32 documents for fine-tuning [24].

3 Motivation

When given a phishing email, PhishCoder will automatically analyze the email to
provide a human-readable summary that includes contextual information. This
structured summary can be used by security personnel for various purposes such
as automated email filtering, real-time threat detection, and improved incident
response procedures. Furthermore, the features extracted by PhishCoder can
be used to support advanced analytics and machine learning models, allowing
for the prediction and prevention of future phishing attempts. Some potential
applications of PhishCoder include:

1. Phishing Email Profiling: Phishing profiling involves analyzing and cate-
gorizing phishing attempts based on their characteristics and patterns to better
detect and prevent future attacks [36]. The outputs of PhishCoder can be used
to create profiles for a single phishing email or a cluster of emails. For instance,
the From-Sector helps identify the industry targeted by the phishing attempt,
while Action-Generic categorizes the expected recipient response and Urgency
Cues flag time-sensitive elements. This enables better detection of future phish-
ing attempts by recognizing patterns and anomalies in email text. Such profiles
with a contextual summary can be very helpful for quickly processing emails by
support staff. Instead of manually analyzing every word in the email, the staff
can simply review the profile to handle the email faster.

2. Phishing Campaign Identification: Phishing email campaign detection in-
volves identifying and grouping emails based on shared characteristics and pat-
terns indicative of coordinated malicious activities [26,3,11]. Security experts
believe that phishing emails from a single campaign share certain similarities,
including impersonated organizations, solicited actions, and URL domains. Out-
puts of PhishCoder contain crucial information about the underlying scam and
hence can be used to detect similarities and recognize phishing campaigns based
on shared tactics and objectives.

3. Phishing Guidance or Advice Tool: A crucial step in organizational phish-
ing management is to provide timely and suitable guidance to users to keep them
safe from phishing attacks, which often use urgent or threatening language to
trick users into taking dangerous actions [35,17,13]. PhishCoder outputs can be
used to create well-tailored advice for users who report suspicious emails. For
instance, the Action-Generic category helps users identify the types of actions
requested, allowing advice to be tailored accordingly, such as cautioning against
clicking on suspicious links or downloading attachments from unknown sources.
Integrating these contextual features into tools like PhishEd [13] can provide
users with quick and accurate support, helping them to recognize and respond
effectively to phishing attempts.

PhishCoder 7

4 Contextual Representation of Emails

Phishing emails typically contain various elements of information about the un-
derlying scam spread across different parts of the email, including the body text,
subject line, and other components. The body text often contains deceptive cues
to prompt actions like clicking on malicious links or providing sensitive informa-
tion. Urgency, fear, or rewards are used to persuade recipients to react quickly.
Additionally, the subject lines are crafted to grab the recipient’s attention and
entice them to open the email, often using attention-grabbing phrases or alarm-
ing statements. Other parts of the email, such as sender information, logos, and
formatting, may also be manipulated to appear legitimate and deceive users
further. In this section, we describe the various contextual information types
extracted by PhishCoder. It is important to note that the feature set used in
the study was originally introduced as part of the Phishing Codebook in previ-
ous work [25]. We utilized a subset of the original codebook and modified some
aspects, but the full Phishing Codebook is provided in the Appendix. Table 1
provides a summary of our feature set, a brief description of each feature, and
pre-defined labels for the classification tasks. Table 2 provides sample outputs
for the two emails shown in Figure 1.

Table 1: The annotation guide for PhishCoder. Comprises seven information
types (codes), a brief explanation of each, and predefined labels (if any).

Task Information Type Explanation/Question Labels

Text Classification Tasks

TC1 From – Sector Type of sector the email claims to be from
financial (28.2%), email (42.8%),
document share (5.4%), logistics (4.8%),
shopping (4.6%), service provider (4.4%),
government (4.8%), unknown (5.0%)

TC2 Action – Generic The action being prompted in the email click (86%), download (12.3%), other (1.7%)

TC3 Urgency Cues Presence of time pressure or urgency cues urgent (34.9%), none (65.1%)

TC4 Threatening language Presence of threatening language, tone threat (42.4%), none (57.6%)

Text Extraction Tasks

TE1 From – Company Name Name of the organization being impersonated N/A
TE2 Action – Specific The reason provided to perform an action N/A
TE3 Main Topic Main purpose of the email N/A

1. From-Sector is the type of organization the phishing email claims to be
from, refers to the affiliation with a specific industry or sector. The code-
book defines eight sectors in this category: financial, email, document share,
logistics, shopping, service provider, government, and unknown.

2. Action-Generic refers to the action prompted from the recipient within the
email. There are three classes, representing the types of responses or behav-

8 T. Saka et al.

Table 2: Outputs of PhishCoder for the two emails shown in Figure 1.
Information Type Email 1 Email 2

From-Sector financial financial
Action-Generic download download
Threat none none
Urgency Cues none none
From-Company nedbank usaa
Main Topic encrypted electronic statement personal document
Action Specific attached to this email document attached

iors expected from the recipient: ‘click’ on a link, ‘download’ an attachment,
and ‘other’.

3. Urgency Cues indicate whether the email contains elements of time pres-
sure or urgency. It is classified into two categories based on the presence or
absence of such cues.

4. Threatening Language identifies the presence of threatening language/tone
within the email, indicating potential negative consequences. It is categorized
into two classes based on whether such language is present or not.

5. From-Company Name refers to the name of the organization that the
phishing email is impersonating. This information is extracted directly from
the text of the email.

6. Main Topic signifies the primary purpose or theme of the phishing email.
This information is extracted directly from the text of the email.

7. Action-Specific denotes the justification provided to the recipient for car-
rying out the specified action requested in the email. This information is
extracted directly from the text of the email.

5 Methodology

Our goal is to create a pipeline for structured information extraction from phish-
ing emails to create a standardized representation of the email context. Our ap-
proach consists of four key stages: (1) processing phishing emails, (2) creating
the training dataset by applying text classification and text extraction methods,
(3) fine-tuning pre-trained models for these tasks and (4) evaluating the models
by using a real-world dataset, and providing a comparative analysis. Our code
implementation is available in a repository3.

5.1 Processing Phishing Emails

In the first step, we pre-process the phishing emails, a critical step to ensure the
data is formatted suitably for subsequent analysis.
3 https://git.ecdf.ed.ac.uk/s2138664/secai_phishcoder

https://git.ecdf.ed.ac.uk/s2138664/secai_phishcoder

PhishCoder 9

Training Dataset We use the annotated dataset from previous work [25]. This
dataset is a subset of the Nazario Phishing Dataset1, which is a publicly available
collection of hand-screened phishing messages collected by Jose Nazario [21]. It is
the most well-known publicly-available phishing email dataset and has been pre-
viously used in multiple works for phishing detection and classification [6,26,37].
The author published a collection of 1916 phishing emails collected between 2015
and 2021, where all emails collected in a single year were published together in
a single plain text file (i.e., mbox). The mbox file for each year (2015-2021) was
downloaded from the original site. Any emails with empty content (201) and
non-English content (114) were removed, resulting in a dataset of 1,688 pro-
cessed emails. They then randomly sampled around 70 emails from each year
(2015-2021) to create a dataset of 503 emails.

In this study, we used a subset of the original annotated dataset compris-
ing 490 emails (D1) and added 31 emails from a new dataset collected from
one department in a university in the United Kingdom (D2). Students and staff
were invited to “donate” phishing emails they received by forwarding them to a
research inbox. We obtained ethics approval from the institution for this data col-
lection. The additional emails were added because the original dataset (D1) had
very few emails in some sectors (‘shopping’, ‘government’, and ‘service provider’)
under the ‘From-Sector’ category, which would have caused issues when training
models. We manually sampled D2 for more emails in these sectors, resulting in a
final dataset of 521 emails (D). Since D2 is a private dataset, it cannot be shared
with the public in the repository.

5.2 Creating Labelled Dataset

Following the pre-processing phase, we create a labeled training dataset. This
dataset serves as the input for fine-tuning our language models. To implement
PhishCoder, we designed four text classification tasks for the features From-
Sector, Action-Generic, Threatening Language, and Urgency Cues. Additionally,
we formulated three text extraction tasks aimed at identifying From-Company
Name, Action-Specific, and the Main Topic of the emails. Table 1 provides a
summary of the information types, a brief explanation of each, and available
labels for the text classification tasks.

The inputs for fine-tuning language models need to be in a specific format.
We utilized Label Studio4 for the annotation process to obtain labels in the
required format. Label Studio is an open-source data labeling tool known for
its versatility and user-friendly interface. Specifically, we used it for both text
classification and text extraction. To perform the labeling, we combined the
subject line with the email body text.

Text classification tasks. Text classification is a process in natural language
processing that involves categorizing text into predefined labels or categories
1 https://monkey.org/~jose/phishing/
4 https://labelstud.io/

https://monkey.org/~jose/phishing/
https://labelstud.io/

10 T. Saka et al.

based on its content. It was the suitable choice for these four tasks as they have
a predefined set of codes. We have four text classification tasks; TC1: From-
Sector, TC2: Action-Generic, TC3: Urgency Cues, TC4: Threatening Language.
TC1 has 8 class, TC2 has 3 classes, TC3 and TC4 have 2 classes. All four tasks
have class imbalances as shown in the ‘Labels’ column of Table 1.

Text extraction tasks. We have three text extraction tasks; TE1: From-
Company Name, TE2: Action-Specific, TE3: Main Topic, that we implement
using Question Answering models. A Question Answering (QA) model in NLP
identifies and extracts the exact segment of text from a given passage that di-
rectly answers a posed question. Such a model is a good choice for these three
tasks because they involve extracting a span of text from the email. The ques-
tions framed for these three tasks are shown below:

1. Main Topic: What is the primary purpose or main topic of the email based
on the provided description?

2. Action - Specific: What is the specific action requested from the receiver
of the email?

3. From - Company Name: What is the name of the organization that the
email is from?

Train, Validation, Test sets. For each task, we exclude any data points
with missing labels or answers. Subsequently, we partition the dataset to train
the models, allocating 80% of the labeled data for our training set, 10% for
validation, and the remaining 10% for the test set.

5.3 Experiments and Models

Choosing the right model to fine-tune requires careful consideration of factors
such as model size, computational resources, and task compatibility. We exper-
iment with two transformer-based architectures: BERT [9] and RoBERTa [19].
Both are pre-trained models on the English language using a masked language
modeling (MLM) objective and are primarily aimed at being fine-tuned on tasks
that use the whole sentence (potentially masked) to make decisions, such as se-
quence classification, token classification, or question answering. These model
choices are ideal as they strike a balance between computational efficiency and
performance, with manageable model sizes that are feasible to fine-tune on stan-
dard resources. Both BERT and RoBERTa have been successfully fine-tuned
for various tasks, demonstrating their versatility and effectiveness in handling
diverse NLP challenges. Furthermore, they can be fine-tuned for both text clas-
sification and question-answering tasks, making it a good choice for this study.
We used two variations of these models: bert-base-uncased5(Model size: 110M

5 https://huggingface.co/google-bert/bert-base-uncased

https://huggingface.co/google-bert/bert-base-uncased

PhishCoder 11

params), bert-large-uncased6 (Model size: 336M params), roberta-base7 (Model
size: 125M params), and roberta-large8 (Model size: 355M params).

6 Evaluation

In this section, we present the results of the experiments.

6.1 Text Classification Tasks

We measure the efficiency of the fine-tuned text classification models using the
standard evaluation metrics: accuracy, precision, recall, and F1 score. All metrics
used are scaled from 0 to 1, with higher values indicating better performance.
The results for the F1 Score, precision (P), and recall (R) provided below are
the weighted average. It is a way to combine the per-class scores into a single
metric that accounts for the different sizes of the classes. This is particularly
useful when you have an imbalanced dataset, where some classes have many
more instances than others.

Action-Generic Classification. Table 3 provides a summary of the classi-
fication results for the ‘Action-Generic’ task. All models achieved high accu-
racy, with BERT-base and RoBERTa-base scoring approximately 92.45% and
RoBERTa-large slightly higher at 94.34%. The F1 scores also reflected strong
performance for the majority class (class 0) and reasonable performance for the
minority class (class 1), with scores between 0.90 and 0.93. However, all models
struggled significantly with class 2, which had only one sample in the valida-
tion set. This resulted in zero precision, recall, and F1-score for class 2 across
all models, highlighting a critical issue of class imbalance and insufficient data
representation.

From-Sector Classification. Table 4 provides a summary of the classification
results for the ‘From-Sector’ task. The BERT-base model achieved an accuracy
of 84.91% and an F1 score of 0.830, indicating a decent performance but with
room for improvement. The BERT-large model showed a slight improvement
with an accuracy of 86.79% and an F1 score of 0.869. RoBERTa-base significantly
outperformed both BERT models with an accuracy of 94.34% and an F1 score
of 0.943. RoBERTa-large further improved the results, achieving the highest
accuracy of 96.23% and an F1 score of 0.965. However, all models consistently
struggled with class 1 (‘service provider’) and class 4 (‘shopping’). BERT-base
and BERT-large models failed to identify class 1 accurately, resulting in zero
precision, recall, and F1-score. Similarly, the RoBERTa-base and RoBERTa-
large models had difficulties with some minority classes, although they showed
6 https://huggingface.co/google-bert/bert-large-uncased
7 https://huggingface.co/FacebookAI/roberta-base
8 https://huggingface.co/FacebookAI/roberta-large

https://huggingface.co/google-bert/bert-large-uncased
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-large

12 T. Saka et al.

better performance overall. The issue with class 1 can be attributed to the class
imbalance in the dataset, where minority classes have significantly fewer samples
compared to the majority classes. This imbalance makes it challenging for the
models to learn and correctly classify the underrepresented classes.

Table 3: Evaluation of Action-Generic
Model Name P R F1 Acc

bert-base 0.91 0.92 0.91 0.92
bert-large 0.93 0.94 0.93 0.94
roberta-base 0.91 0.92 0.92 0.92
roberta-large 0.93 0.94 0.93 0.94

Table 4: Evaluation of From Sector
Model Name P R F1 Acc

bert-base 0.85 0.85 0.83 0.85
bert-large 0.88 0.87 0.87 0.87
roberta-base 0.96 0.94 0.94 0.94
roberta-large 0.98 0.96 0.96 0.96

Threatening Language Classification. Table 5 provides a summary of the
classification results for the ‘Threatening Language’ task. The BERT-base and
BERT-large models both achieved an accuracy of 83.33% with F1 scores of 0.833
and 0.831, respectively, indicating reasonable performance but with room for
improvement. Both models exhibited good precision and recall for the major-
ity class (‘none’), but slightly lower performance for the minority class (‘threat’).
The RoBERTa-base model significantly outperformed both BERT models, achiev-
ing an accuracy of 98.15% and an F1 score of 0.982. This indicates a superior
ability to classify threats accurately, with high precision and recall for both
classes. The RoBERTa-large model further improved these results, achieving
perfect accuracy and an F1 score of 1.00, demonstrating its capability in han-
dling the classification task with flawless precision and recall for both classes.

Urgency Cues Classification. Table 6 provides a summary of the classifi-
cation results for the ‘Urgency Cues’ task. The BERT-base model achieved an
accuracy of 68.52% and an F1 score of 0.664. The BERT-large model showed
substantial improvement, achieving an accuracy of 92.59% and an F1 score of
0.926. This indicates a balanced and high-level performance, with both preci-
sion and recall scores around 0.89 for the minority class, showing its robustness
in identifying urgent messages. The RoBERTa-base model also demonstrated
strong performance, achieving an accuracy of 87.04% and an F1 score of 0.867.
While slightly lower than BERT-large, it maintained high precision and recall
for the majority class and improved recall for the minority class compared to
BERT-base. The RoBERTa-large model further improved results, achieving an
accuracy of 88.89% and an F1 score of 0.887, showing balanced performance
with both high precision and recall for both classes. These findings highlight
the significance of model architecture and size, with larger and more advanced
models like BERT-large and RoBERTa-large providing superior performance,
particularly in handling class imbalance.

PhishCoder 13

Table 5: Evaluation of Threat Language
Model Name P R F1 Acc

bert-base 0.83 0.83 0.83 0.83
bert-large 0.83 0.83 0.83 0.83
roberta-base 0.98 0.98 0.98 0.98
roberta-large 1.00 1.00 1.00 1.00

Table 6: Evaluation of Urgency Cues
Model Name P R F1 Acc

bert-base 0.67 0.69 0.66 0.68
bert-large 0.93 0.93 0.92 0.93
roberta-base 0.87 0.87 0.87 0.87
roberta-large 0.89 0.89 0.89 0.89

6.2 Text Extraction Tasks

The performance evaluation of question-answering models for text extraction
tasks relies on a set of well-established evaluation metrics, primarily derived from
the Stanford Question Answering Dataset (SQuAD) benchmark [23]. We use two
metrics recommended by HuggingFace: Exact Match and F1 Score. The exact
match metric quantifies the proportion of predictions that exactly match the
ground truth answer spans. It provides a stringent measure of model accuracy,
requiring precise alignment between predicted and true answers. The F1 score in
the context of text extraction evaluates the model’s performance by considering
the overlap between predicted and true answer spans. It balances precision and
recall, providing a holistic measure of model effectiveness. The values reported
for both these measures range on a 0 to 1 scale, with higher values indicating
better performance.

Table 7 reports the results for extracting the Main Topic from the email
text. For this task, roberta-base achieved the highest scores with an Exact Match
of 0.40 and an F1 score of 0.71, outperforming both the BERT and roberta-large
models. Table 8 reports the results for extracting the Action-Specific from the
email text. For this task, bert-base-uncased demonstrated superior performance
with an Exact Match of 0.58 and an F1 score of 0.78, whereas roberta models
lagged behind with lower scores, particularly roberta-large with an Exact Match
of 43.40 and an F1 score of 70.37. For the From - Company Name task,
reported in Table 9, bert-large-uncased emerged as the best performer with both
an Exact Match and F1 score of 0.90, surpassing the other models which scored
slightly lower, with roberta-large scoring the least with an Exact Match of 0.85
and an F1 score of 0.87. These results indicate that language models fine-tuned
for QnA can play a crucial role in text extraction from phishing emails. Although,
lower than the text classification results, we still see promising results. We could
improve performance with more training data.

6.3 Results

The results from our experiments highlight the potential of fine-tuned language
models to create stronger phishing mitigation tools. The experiments, conducted
with multiple models (bert-base-uncased, bert-large-uncased, roberta-base, and
roberta-large), show that fine-tuning allows these models to adapt to the spe-
cific nuances of phishing emails, thereby improving their accuracy and reliability.

14 T. Saka et al.

Table 7: Evaluation of Main Topic
Model Name Exact Match F1

bert-base 0.38 0.69
bert-large 0.30 0.68
roberta-base 0.40 0.71
roberta-large 0.32 0.69

Table 8: Evaluation of Action-Specific
Model Name Exact Match F1

bert-base 0.58 0.78
bert-large 0.47 0.77
roberta-base 0.49 0.74
roberta-large 0.43 0.70

Table 9: Evaluation of From - Company Name
Model Name Exact Match F1

bert-base 0.88 0.88
bert-large 0.90 0.90
roberta-base 0.88 0.88
roberta-large 0.85 0.87

For instance, roberta-base excelled in extracting main topics, while bert-base-
uncased and bert-large-uncased were particularly effective in action-specific and
company name identification tasks, respectively. The ability of these models to
accurately extract contextual information from phishing emails makes them a
valuable tool, offering a significant improvement over traditional text-embedding
techniques. This way we can create descriptive and standardized representations
of phishing emails. The study demonstrates that integrating AI and ML through
frameworks like PhishCoder can significantly bolster the capabilities of cyberse-
curity measures, providing a promising avenue for future research and application
in phishing threat mitigation.

7 Multi-Task Classification

In this section, we introduce a multi-task classifier to investigate whether a single
model could produce acceptable results in the text classification tasks described
above. We use a multi-head model, which is a neural network architecture de-
signed to perform multiple tasks or make multiple predictions simultaneously
using a shared underlying representation. The main advantage of such a model
is its ability to leverage the shared knowledge and features learned by the base
network, improving efficiency and potentially enhancing performance across all
tasks. This approach also reduces the computational overhead of training and
maintaining separate models for each task, thus saving computational resources.

Design. We designed and implemented a multi-task learning model to per-
form all four text classification tasks simultaneously. The dataset for each task
was tokenized and processed into batches for efficient training using PyTorch’s
DataLoader. The model architecture consists of a common backbone network
that processes the input data followed by multiple output “heads,” each special-
ized for a different task or aspect of the data. We employed a shared encoder

PhishCoder 15

Table 10: Evaluation of Text Classification for Urgency Cues

Model Name Action Sector Threat Urgent
F1 Acc F1 Acc F1 Acc F1 Acc

bert-base 0.75 0.83 0.13 0.29 0.50 0.63 0.62 0.73
bert-large 0.84 0.87 0.28 0.35 0.48 0.56 0.59 0.67
roberta-base 0.75 0.83 0.13 0.29 0.49 0.63 0.62 0.73
roberta-large 0.75 0.83 0.23 0.40 0.20 0.37 0.62 0.73

to extract common features and separate decoders for each task to focus on
task-specific details. Each decoder produced a probability distribution over the
possible classes for its respective task, and the outputs were compared with the
ground truth labels to compute the loss. We used cross-entropy loss for all tasks
and used the average loss over all tasks to update the model, ensuring that the
gradients from each task contributed to updating the shared encoder and the
task-specific decoders.

Training and Evaluation. During training, the model was optimized us-
ing the Adam optimizer, and we employed a learning rate scheduler to adjust
the learning rate dynamically, aiding in better convergence. The training loop
iterated over multiple epochs, where each epoch comprised iterating through the
batches of each task. After each epoch, the model’s state and the optimizer’s
state were saved, enabling checkpointing and future retraining or fine-tuning.
For evaluation, we utilized separate validation datasets for each task, processed
similarly to the training data. The evaluation involved computing metrics like
accuracy and F1-score to quantify the model’s performance on each task.

The results of the multitask model evaluation reveal varying degrees of per-
formance across different tasks. BERT-large stands out with the highest overall
F1 score of 0.55 and accuracy of 0.61. BERT-base and RoBERTa-base models
exhibit similar performance, both achieving an overall F1 score of 0.50 and lead-
ing in threat and urgent tasks with F1 scores of 0.50 and 0.62, respectively, and
an overall average accuracy of 0.62. RoBERTa-large, although not leading in any
specific task, demonstrates a balanced performance with an overall F1 score of
0.45 and accuracy of 0.58. Notably, the ‘Sector’ classification task remains chal-
lenging for all models, with the highest F1 score being 0.28 from BERT-large.
This could be because of the class imbalance issue. For the multi-headed classifi-
cation experiments, we did not stratify the sampling of training, validation, and
test sets. This means that the distribution of classes might have been uneven
across the different sets, leading to potential overfitting on the training data and
underperformance on the validation and test sets.

8 Conclusion

In this paper, we propose a novel framework called PhishCoder to extract con-
textual information from phishing emails using pre-trained language models.

16 T. Saka et al.

This approach aims to create a new contextual and descriptive representation
of emails using a set of human-centric features proposed in the Phishing Code-
book [25]. We fine-tuned four transformer-based models using a small dataset of
521 manually annotated phishing emails. Our findings indicate that fine-tuned
language models provide a promising approach for extracting contextual infor-
mation from phishing emails, offering a new direction for security researchers.
This method enables us to go beyond traditional text representation, which
is not always explainable, towards more nuanced representations that can be
highly valuable for certain phishing mitigation tasks. Additionally, we developed
a multi-headed classification model to simultaneously perform all four classi-
fication tasks. The results indicate that individual models outperformed the
combined model when trained with limited data.

In our future work, we have two main goals. First, we aim to investigate
other language models capable of handling these tasks, including large language
models (LLMs) such as GPT or LLama. Additionally, while our initial exper-
iments in multi-headed classification show promise, they require further work.
We intend to annotate more data from multiple sources to enhance our training
and evaluation. Second, we plan to explore the various practical applications of
PhishCoder, particularly its potential to detect phishing campaigns and develop
phishing auto-response tools.

Limitations. One major limitation of our proposed approach is the issue of
class imbalance. Class imbalance is a common challenge in machine learning and
natural language processing tasks, where certain classes are significantly under-
represented compared to others. In the context of text classification tasks such
as action-generic and from-sector, an imbalanced dataset means the model may
not learn the nuanced characteristics of the minority classes, leading to lower
precision, recall, and F1 scores for those classes. Addressing class imbalance of-
ten requires techniques like data augmentation, resampling (oversampling the
minority class or undersampling the majority class), and adjusting class weights
during training. Another limitation of this study is the lack of access to pub-
licly available datasets. The Nazario Phishing dataset is a collection of phishing
emails received by a single person, and may not necessarily be representative
or generalizable, which can cause overfitting. In future work, we plan to com-
bine multiple phishing email datasets to create a more representative dataset to
conduct experiments.

References

1. Abu-Nimeh, S., Nappa, D., Wang, X., Nair, S.: A comparison of machine learning
techniques for phishing detection. In: Proceedings of the anti-phishing working
groups 2nd annual eCrime researchers summit. pp. 60–69 (2007)

2. Alhogail, A., Alsabih, A.: Applying machine learning and natural language pro-
cessing to detect phishing email. Computers & Security 110, 102414 (2021)

3. Althobaiti, K., Vaniea, K., Wolters, M.K., Alsufyani, N.: Using clustering algo-
rithms to automatically identify phishing campaigns. IEEE Access (2023)

PhishCoder 17

4. (APWG), A.P.W.G.: Phishing activity trends report, 4th quarter 2023 (2024),
https://apwg.org/trendsreports/, accessed on 4th March 2024

5. Bengio, Y., et al.: A neural probabilistic language model. Journal of Machine Learn-
ing Research 3, 1137–1155 (2003)

6. Bountakas, P., Koutroumpouchos, K., Xenakis, C.: A comparison of natural lan-
guage processing and machine learning methods for phishing email detection. In:
Proceedings of the 16th International Conference on Availability, Reliability and
Security. pp. 1–12 (2021)

7. Cowie, J., Lehnert, W.: Information extraction. Communications of the ACM
39(1), 80–91 (1996)

8. Dagdelen, J., Dunn, A., Lee, S., Walker, N., Rosen, A.S., Ceder, G., Persson, K.A.,
Jain, A.: Structured information extraction from scientific text with large language
models. Nature Communications 15(1), 1418 (2024)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

10. Hamid, I.R.A., Abawajy, J.H.: An approach for profiling phishing activities. Com-
puters & Security 45, 27–41 (2014)

11. Han, Y., Shen, Y.: Accurate spear phishing campaign attribution and early detec-
tion. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing.
pp. 2079–2086 (2016)

12. IBM: Cost of a data breach report 2023 (2023), https://www.ibm.com/reports/
data-breach, accessed on 4th March 2023

13. Jenkins, A., Kokciyan, N., Vaniea, K.E.: Phished: Automated contextual feedback
for reported phishing. In: 18th Symposium on Usable Privacy and Security. Usenix
(2022)

14. Karim, A., Azam, S., Shanmugam, B., Kannoorpatti, K., Alazab, M.: A compre-
hensive survey for intelligent spam email detection. IEEE Access 7, 168261–168295
(2019)

15. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: a literature survey. IEEE
Communications Surveys & Tutorials 15(4), 2091–2121 (2013)

16. Laclavík, M., Dlugolinskỳ, Š., Šeleng, M., Kvassay, M., Gatial, E., Balogh, Z.,
Hluchỳ, L.: Email analysis and information extraction for enterprise benefit. Com-
puting and informatics 30(1), 57–87 (2011)

17. Lain, D., Kostiainen, K., Čapkun, S.: Phishing in organizations: Findings from a
large-scale and long-term study. In: 2022 IEEE Symposium on Security and Privacy
(SP). pp. 842–859. IEEE (2022)

18. Listık, V., Let, Š., Šedivỳ, J., Hlavác, V.: Phishing email detection based on named
entity recognition. In: Proceedings of the 5th International Conference on In-
formation Systems Security and Privacy (ICISSP). pp. 252–256. SCITEPRESS
– Science and Technology Publications, Lda (2019). https://doi.org/10.5220/
0007314202520256

19. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692 (2019)

20. Mahlawi, A.Q., Sasi, S.: Structured data extraction from emails. In: 2017 Interna-
tional Conference on Networks & Advances in Computational Technologies (Ne-
tACT). pp. 323–328. IEEE (2017)

21. Nazario, J.: Phishing corpus. Online: http://monkey. org/% 7Ejose/wiki/doku.
php (2007)

https://apwg.org/trendsreports/
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach
https://doi.org/10.5220/0007314202520256
https://doi.org/10.5220/0007314202520256
https://doi.org/10.5220/0007314202520256
https://doi.org/10.5220/0007314202520256

18 T. Saka et al.

22. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language un-
derstanding with unsupervised learning. Tech. rep., OpenAI (2018)

23. Rajpurkar, P., Zhang, J., Liang, P.: Know what you don’t know: Unanswerable
questions for squad. In: ACL 2018 (2018)

24. Sage, C., Douzon, T., Aussem, A., Eglin, V., Elghazel, H., Duffner, S., Garcia,
C., Espinas, J.: Data-efficient information extraction from documents with pre-
trained language models. In: Document Analysis and Recognition–ICDAR 2021
Workshops: Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part II
16. pp. 455–469. Springer (2021)

25. Saka, T., Jain, R., Vaniea, K., Kökciyan, N.: Phishing codebook: A struc-
tured framework for the characterization of phishing emails. arXiv preprint
arXiv:2408.08967 (2024), https://arxiv.org/abs/2408.08967

26. Saka, T., Vaniea, K., Kökciyan, N.: Context-based clustering to mitigate phishing
attacks. In: Proceedings of the 15th ACM Workshop on Artificial Intelligence and
Security. pp. 115–126 (2022)

27. Salloum, S., Gaber, T., Vadera, S., Shaalan, K.: Phishing email detection using
natural language processing techniques: a literature survey. Procedia Computer
Science 189, 19–28 (2021)

28. Salloum, S., Gaber, T., Vadera, S., Shaalan, K.: A systematic literature review
on phishing email detection using natural language processing techniques. IEEE
Access 10, 65703–65727 (2022)

29. Somesha, M., Pais, A.R.: Classification of phishing email using word embedding
and machine learning techniques. Journal of Cyber Security and Mobility pp. 279–
320 (2022)

30. Song, J., Eto, M., Kim, H.C., Inoue, D., Nakao, K.: A heuristic-based feature
selection method for clustering spam emails. In: Neural Information Processing.
Theory and Algorithms: 17th International Conference, ICONIP 2010, Sydney,
Australia, November 22-25, 2010, Proceedings, Part I 17. pp. 290–297. Springer
(2010)

31. Toolan, F., Carthy, J.: Feature selection for spam and phishing detection. In: 2010
eCrime Researchers Summit. pp. 1–12. IEEE (2010)

32. Vaswani, A., et al.: Attention is all you need. In: Advances in neural information
processing systems. vol. 30, pp. 5998–6008 (2017)

33. Verma, R., Hossain, N.: Semantic feature selection for text with application to
phishing email detection. In: international conference on information security and
cryptology. pp. 455–468. Springer (2013)

34. Verma, R., Shashidhar, N., Hossain, N.: Detecting phishing emails the natural
language way. In: Computer Security–ESORICS 2012: 17th European Symposium
on Research in Computer Security, Pisa, Italy, September 10-12, 2012. Proceedings
17. pp. 824–841. Springer (2012)

35. Williams, H., Leggett, O., Coleman, N., Navin Shah, J., Furnell, S.: Cyber security
breaches survey 2021 – chapter 5: Incidence and impact of breaches or attacks
(March 2021)

36. Yearwood, J., Webb, D., Ma, L., Vamplew, P., Ofoghi, B., Kelarev, A.: Applying
clustering and ensemble clustering approaches to phishing profiling. In: Proceed-
ings of the Eighth Australasian Data Mining Conference-Volume 101. pp. 25–34.
Citeseer (2009)

37. Zeng, V., Baki, S., Aassal, A.E., Verma, R., De Moraes, L.F.T., Das, A.: Diverse
datasets and a customizable benchmarking framework for phishing. In: Proceedings
of the Sixth International Workshop on Security and Privacy Analytics. pp. 35–41
(2020)

https://arxiv.org/abs/2408.08967

PhishCoder 19

Appendix: Phishing Codebook

This codebook is a framework to extract important information from phishing
emails in a structured format. While coding only consider the user-facing part of
the email; subject line, displayed header, and the main body visible to end-users.

From – Company Name If there is a named company in the from address,
subject line, or email body that the email claims to be from. State the name.
For example, “PayPal”. If two companies are named, include both. Only code for
companies or organizations, ignore the reference to a named person. If there are
two variants of the same company, name both with the more recognizable name
first and separated by commas. For example, ‘Microsoft, Outlook’. If there is no
name specified in the email, then use one of the following:

– Monkey – Email says it is from some group associated with monkey.org.
– Organization – The email is claiming or implying to be from an organization

the user works for. They may use generic terms like “HR” or "Manager” that
are associated with a company. Often the organization is not named, but
word usage implies that the email is internal.

– None - The email makes no claim about who it is from, or the coder cannot
infer a specific organization name from it.

From – Sector The type of sector that the email claims to be from. Refer to
the list below to code this. If a company is involved in several different types of
sectors, code for the one that the email content refers to. For example, Amazon
is both a Shopping website and a Logistics service, if the email is about package
delivery, then Logistics should be coded and not Shopping.

– Financial – banks, credit cards, investment company, cryptocurrency
– Email – email provider,or a department that manages email accounts.
– Document share – Online service that allows users to share documents with

each other. For example: DocuSign or OneDrive.
– Logistics – shipping and delivery of goods and parcels
– Shopping – purchasing goods or services online, companies like Amazon.
– Service provider – organization that provides online services and does not

fall into any sector described above.
– Security – any company that claims to be a security provider, anti-virus

service, or regarding identity protection due to a security breach.
– Government – any email from a government organization. For example, tax-

related emails, HMRC, or VISA-related emails, and so on.
– Unknown – the coder can’t tell from just the email or does not know what

the company is.

Salutation The type of salutation used to address the user. Some phishers
tailor emails to users by using their name or email to make it seem legitimate,
while others send out mass emails with no specific salutation. Code if the email
addresses the user specifically, either in a proper salutation or in the email body
text. IGNORE the email header for this code.

20 T. Saka et al.

– Name - if the name of the user is used. For example: ‘Dear Jose’, ‘Attention
Jose’

– Email - if user email id is used in the salutation
– Generic - if no name or personal salutation is used. For example: ‘Dear User’
– None - if there is no salutation at all or a reference to an individual. For

example: ‘Hello’

Threatening language Phishers often use a threat or warning to scare
users into taking action. Code if the email subject line or message contains any
threatening language or tone. This includes talking about negative consequences
or loss.

– Threat - If there is a DIRECT threat statement or wording in the email. For
example: “account will be deleted” or “money will be lost”.

– None- If the email has no threat or incentive mentioned. Or if you cannot
accurately infer one from the email. Also includes cases where the outcome
of a process is described (I.e. mail being held) which may be undesirable,
but no direct threat statement exists.

Urgency Cues Phishers often try to create a sense of urgency to encourage,
or even demand, immediate action in a bid to fluster the receiver. Code if the
email message or subject line contains time pressure or urgency cues, including
implied.

– Urgent – if there is a mention of time limit or mention any urgency words. For
example: ‘files will be lost in 24hrs’ or ‘expire in 3 days’ or ‘click Immediately’
or ‘soon’.

– None – If there is no such time pressure scare or wording used in the email.
Or if you cannot accurately infer from the message.

Action – Generic Code the action being prompted in the email. This only
includes clearly stated explicit actions, and not any implied actions.

– Click – if the email is asking you to click on any links
– Download – if the email is asking you to download an attachment or appli-

cation
– Reply/Email – if the email is asking you to reply or send an email to a given

address
– Call – if the email is asking you to call a number
– Other – If any other action is mentioned that is not covered above.
– None – No clear action is requested, or the coder is unsure what is being

asked for.

Action – Specific Provide details regarding the reason the phisher has given
for the action. We will use in vivo coding for this column - copy and paste a few
words/phrases directly from the email text. For example: For the action ‘click
link to verify account’, the code is ‘to verify account’.

Main Topic Code the main purpose of the email. Use a few words or a
phrase from the email to summarize the main topic. For example: ‘package has
been returned’.

	PhishCoder: Efficient Extraction of Contextual Information from Phishing Emails

