
Recruiting Participants With Programming Skills: A Comparison
of Four Crowdsourcing Platforms and a CS Student Mailing List

Mohammad Tahaei
mohammad.tahaei@bristol.ac.uk
Department of Computer Science

University of Bristol
United Kingdom

Kami Vaniea
kami.vaniea@ed.ac.uk
School of Informatics

University of Edinburgh
United Kingdom

ABSTRACT
Reliably recruiting participants with programming skills is an ongo-
ing challenge for empirical studies involving software development
technologies, often leading to the use of crowdsourcing platforms
and computer science (CS) students. In this work, we use five exist-
ing survey instruments to explore the programming skills, privacy
and security attitudes, and secure development self-efficacy of par-
ticipants from a CS student mailing list and four crowdsourcing
platforms (Appen, Clickworker, MTurk, and Prolific). We recruited
613 participants who claimed to have programming skills and as-
sessed recruitment channels regarding costs, quality, programming
skills, as well as privacy and security attitudes. We find that 27% of
crowdsourcing participants, 40% of crowdsourcing participants who
self-report to be developers, and 89% of CS students answered all
programming skill questions correctly. CS students were the most
cost-effective recruitment channel and rated themselves lower than
crowdsourcing participants about secure development self-efficacy.

CCS CONCEPTS
• Security and privacy → Software and application security;
Human and societal aspects of security and privacy; Usabil-
ity in security and privacy; • Human-centered computing→
Human computer interaction (HCI); HCI design and evalua-
tion methods; • Software and its engineering;
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1 INTRODUCTION
When studying any type of user population it is important to con-
sider how the recruitment channels and methods might impact the
resulting research. Different populations of users are well-known
to differ culturally, have different biases, and different expecta-
tions [5, 6, 53]. Amazon Mechanical Turk workers, for example,
are known to be more privacy sensitive than the general popula-
tion [28]. Similarly, populations based in specific countries likely
respond in ways that reflect that country’s norms and culture [54].
All these issues should be considered when selecting a recruitment
channel and approach to ensure that the resulting research produces
outcomes that are externally valid in regards to the main question
being asked. In this work, we consider the issue of recruiting peo-
ple with programming skills with a particular eye towards online
studies that need such a population to evaluate new programming
paradigms, tools, or programming experience and attitudes.

The various research areas touching on software development
such as end-user programming [30], developer-centered security
and privacy [62, 63, 66], and developer tool support have all been
growing in focus due to the key role developers play in society
and the need to provide them with effective support. There has
also been a strong push to make software development easier and
more accessible to a wider set of users leading to a focus on how to
improve usability for the different groups that engage in program-
ming [30, 38]. Such as, by making privacy and security technologies
such as APIs and notifications directed to developers usable [63].
However, efficiently finding people with programming skills to
study can be non-trivial since it is a skill that takes effort to learn
and people who are highly skilled at it are often paid well by compa-
nies, which can make them more challenging to recruit. To recruit
a broad range of participants with programming skills, some re-
searchers have turned to crowdsourcing platforms [4, 25, 59, 68].
However, the ability to generalize results to a larger population or
justify the choice of crowdsourcing platform are often discussed
as a limitation. Computer science (CS) students have also been a
long standing population for such studies, however, the discussions
about the external validity of results involving this population have
a long history as well [15, 17, 31, 40, 51, 61].

As an alternative solution, some researchers started recruiting
from websites that developers use to learn coding or upload code
(e.g., GitHub and Google Play). While developers’ emails can be
harvested from these services, it is against the terms of services
of these platforms and it is also not a sustainable solution. Even if
the terms of services was not an issue, contacting users of these
platforms multiple times a year by several researchers will likely
feel like spamming to developers and begin to feel overwhelming.

https://doi.org/10.1145/3491102.3501957
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We aim to add context to the choice of recruitment channels to
aid researchers when recruiting participants with programming
skills by studying crowdsourcing platforms and CS students in the
context of existing survey instruments. Our research questions are:

RQ1: Which recruitment channels are suitable for recruiting
participants with programming skills?

RQ2: Which self-reported information correlates well with
passing all presented programming screening questions pro-
posed by Danilova et al. [10]?

RQ3: How do participants with programming skills vary across
recruitment channels in terms of privacy and security atti-
tudes as well as secure development self-efficacy?

We recruited 613 participants from five recruitment channels
(four crowdsourcing platforms and an University CS student mail-
ing list) who expressed having computer programming skills and
asked them to answer questions from five survey instruments de-
signed by prior work to measure programming skills and experi-
ences [10, 16], secure programming self-efficacy [68], user privacy
concerns [34], and general computer security attitudes [14].

We find that recruiting CS students from our University’s mail-
ing list resulted in the highest data quality in terms of programming
skills (highest), costs (lowest), number of duplicates (low), and pass-
ing attention check questions (high) compared to the other tested
crowdsourcing platforms. Among the crowdsourcing platforms,
we find that Prolific generated a higher number of participants
who could pass basic programming questions and was more cost-
effective compared to Appen, Clickworker, and MTurk. We suggest
future researchers consider recruiting CS students for studies that
require a programming skilled population. We also recommend
crowdsourcing platforms include more specific pre-asked questions
that researchers can filter based on, such as experience with object-
oriented programming and years of experience in software develop-
ment instead of generic questions like “Do you have programming
skills?” as such questions can result in a broad interpretation of
“programming skills” by a crowdworker audience. These adjust-
ments would greatly assist researchers in finding populations that
better match their research needs.

2 RELATEDWORK
Our work spans the literature on crowdsourcing services and em-
pirical studies with developers. Below, we cover both areas.

2.1 Crowdsourcing Platforms
Crowdsourcing platforms enable researchers to access a large pool
of participants without the need for traditional approaches like
fliers. Examples of tasks that the HCI community employs crowd-
workers for include labeling data [50] and eliciting users’ privacy
concerns regarding online messaging tools [26]. Other studies mea-
sure the quality of work in crowdsourcing platforms such as MTurk,
Prolific, and CrowdFlower [44, 45]. In a 2017 study [44], MTurkers
were found to be more experts in efficiently completing online tasks
compared to Prolific and CrowdFlower participants; while using
CrowdFlower may result in a higher response rate, more partici-
pants also failed attention check questions compared to the other
two platforms; overall, Prolific and MTurk participants produced
higher quality data compared to CrowdFlower.

2.2 Empirical Studies With Developers
Conducting human-computer interaction type studies with develop-
ers is a growing field that aims to improve the understanding of this
user group as well as improve the usability of the tools and resources
they use. Such studies make use of a range of methodologies such
as field studies, surveys, and interviews [38, 39, 56]. This research
area also includes testing developer experience of programming lan-
guages [67], building new programming tools/APIs/plugins [39, 69],
and understanding how developers seek information [32].

Developer-centered privacy and security—as a subset of em-
pirical studies with developers with a specific focus—studies how
developers interact with privacy and security technologies directed
at developers either in the code level or in user interfaces [63] such
as security warnings in programming libraries [11, 22] and static
analysis tools [65] as well as graphical privacy interfaces in ad net-
works [59, 64]. CS students are sometimes used as a convenience
sample for developer studies [31]; however, the research community
continues to discuss the validity of such an approach [15, 17, 40].
Efforts to compare CS students, freelancers, and professional de-
velopers who work in companies show that in terms of secure
coding skills there are similarities between the three groups and
CS students as a convenient sample may produce high-quality
data [40, 41, 43]. Although, professional company developers may
perform better in secure coding tasks perhaps because of the train-
ing and experience they receive at work [40].

In summary, a limitation and critique of empirical studies with
developers are often finding the right population and validity of
the results [31]. It is also notable that recruiting developers has
been reported as a difficulty in many studies [25, 31, 40, 57, 65, 68,
70]. Our work contributes to this line of research by comparing
various recruitment channels using survey instruments from the
literature with regard to participants’ secure development self-
efficacy (i.e., “belief in one’s ability to successfully perform a task—
which correlates with actual skill in other contexts” [68, p. 1]) as
well as general privacy and security attitudes. Such an approach
enables future researchers to compare their results with our dataset
and results because we used published survey instruments rather
than a custom-built instrument. We also make recommendations
about observed costs, quality, and programming skills associated
with each recruitment channel.

3 METHOD
We constructed a survey composed of five survey instruments from
prior research and distributed it across five recruitment channels to
understand the similarities and differences between these channels
and the communities they draw from, as well as the quality of data
and cost-effectiveness of recruiting from each channel.

We aimed to build groundwork for future researchers who want
to recruit participants with programming skills. RQ1’s goal is to
help future researchers find an appropriate channel for recruiting
participants with the programming skills they need. RQ2 could help
researchers use a smaller set of questions and potentially rely on
self-reported or demographics questions to find participants with
programming skills instead of (or in combination with) asking a set
of programming questions. RQ3’s results could assist researchers
in developer-centered privacy and security to understand where to
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look for participants with certain privacy and security attitudes as
well as secure development self-efficacy. Our study was approved
by the ethics committee of our institute.

3.1 Recruitment Channels
We used Appen, Clickworker, MTurk, Prolific, and a local mailing
list for computer science students to recruit our participants.1 Our
recruitment started in July 9, 2021 and ended in August 31, 2021.
We also provide a reflection of our experience with these channels
in Section 5.4.

Appen: A platform formerly known as CrowdFlower which is
for running microtasks. It is current mission focuses on build-
ing training data for artificial intelligence systems. Crowd-
Flower was used by researchers in the usable security and
privacy community to run studies to elicit users’ perceptions
around privacy [1] and security [37] technologies. Appen
claims to have over one million workers world wide [2].

Clickworker: Focuses on training data sets, however it has
been used for running surveys in usable security and privacy
studies [33, 36] and finding developers [10]. Clickworker
claims to have over 2.8 million workers around the world [9].

MTurk: A classic crowdsourcing platform that has been widely
used for running surveys and creating training datasets. It is
estimated that in 2019 MTurk’s worker population was over
250,000 [49]. MTurk is also a common recruitment channel
for usable privacy and security studies (e.g., [26, 52]).

Prolific: Advertises itself as a tool for recruiting participants
for market and behavioral research, as well as user studies.
It has over 150,000 participants [46]. Prolific has been used
in general usable security and privacy literature [19, 71] and
also studies directed at developers [59, 65, 68].

Computer science students: As it is often challenging to find
developers for empirical studies, CS students have been used
as proxy to understand developers’ attitudes and perceptions
towards privacy and security technologies directed at devel-
opers [40, 42, 61, 63]. Therefore, we decided to recruit from
our local CS students through an internal mailing list.

We decided to use the above recruitment channels as they have
been used in prior research. Although, harvesting developers’ emails
from GitHub has been used in prior research to recruit developers,
we decided not to use this channel because it is against GitHub’s
terms of services and privacy policy to collect users’ emails [20, 21].
Social networks, such as LinkedIn and Twitter, were not considered
because while they have been used successfully to recruit for small
studies [60], there is no support for doing large-scale recruitment.
Websites like Reddit, might also work for recruitment, but they
are similarly not designed to support researchers naively which
can make it challenging to conduct screening without dissuading
participation or having a high overhead of managing open discus-
sions about the research. We, therefore, defer exploration of these
recruitment channels to future work.

1Disclaimer: we are not funded and associated with any of these platforms. This was a
purely academic project funded by our institute which is a public research university.

3.2 Survey Instruments
We first ran a short screening survey described below and then
invited participants who passed our criteria to the main survey. Both
surveys were implemented on Qualtrics [48]. We set aside a budget
of $1200 for each recruitment channel and deployed surveys on each
channel until we reached our budget limit (MTurk and Prolific), or
reached a point where no more participants were taking our survey
(Appen and Clickworker), as determined by no new participants in
at least three days. All answer options (Likert items and multiple-
choice options) in both surveys were randomized.

3.2.1 Screening Survey. We were interested in participants who
potentially work in a software development-related role as these are
often the target population for studies that require participants with
programming skills. Therefore, we set four criteria to satisfy our
requirement: (1) employment status must be full-time, (2) they must
not be students, as we covered student participants using a separate
distribution channel (CS students mailing list), (3) they must have
programming skills, and (4) they must be fluent in English as our
survey was in English. The other reason for these four criteria was
that Prolific’s provided screening criteria included all these points
allowing for easy filtering without a separate screening survey;
Prolific is the only channel to offer such a service. Hence, we did
not need to run a separate survey on Prolific. But for the other
crowdsourcing channels, Appen, Clickworker, and MTurk, we first
sent out the four-question survey, and sent out the main survey to
the selected participants who passed our criteria.

We did not run a screening survey with the CS students because
it is reasonable to assume they have programming experience as
everyone on the list would have completed at minimum one year
of CS education taught in English, and also because of the friction
it would cause leading to lower participation.

Participants received $0.21 for the screening survey (in accor-
dance with minimum wage in our institute’s home country). The
survey is included in the Supplementary Materials.

3.2.2 Main Survey. The main survey consisted of a randomized
order of the five survey scales proposed in prior work to assess
participants’ programming experience, privacy and security atti-
tudes, as well as secure development self-efficacy. Instruments for
measuring programming experience for all types of developers are
not yet fully developed as “programming experience” is a broad
term, developers come from a wide range of skills and backgrounds,
and measuring their experience still requires further research [31].
Therefore, we decided to include two surveys (PROGEX and REAL-
CODE) to cover a broad set of questions.

PROGEX “Measuring programming experience” [16]: Built to
assess programming experiences, the original study recruited
students. Three questions that were found to be particularly
correlated with students’ ability to find the correct answers
to programming tasks were: (1) self-reported programming
experience (scale 0–10), (2) how participant compare their
programming skills with their classmates (scale 1–5), and (3)
experience with object-oriented programming (scale 1–5).
We were able to access the original online dataset [8].
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REALCODE “Do you Really Code? Designing and Evaluat-
ing Screening Questions for Online Surveys with Program-
mers” [10]: Built to assess the programming skills of partici-
pants, it was also used for screening crowdsourcing workers
(Clickworker and Qualtrics recruitment panel). Despite be-
ing a recent publication, we found this survey to be closely
related to our work as it aims to facilitate the recruitment
from crowdsourcing services by building a short survey to
assess subjects’ programming skills. We used the five most
recommended questions out of the 16 presented questions.
These questions asked about: (1) frequent visited website
as an aid for programming, (2) description of a compiler’s
function, (3) description of a recursive function, (4) value
of a Boolean value, and (5) function parameter in sample
code. As suggested, the first four questions were timed (30-60
seconds), and the fifth question was not timed. As opposed
to other surveys, these questions are not self-report as they
assess knowledge and ability to read code. A ground-truth
group of developers in the original study answered all these
questions correctly, while other participants did not. We
contacted the authors and they kindly agreed to share the
original dataset with confidentiality agreements.

SSDSES “Building and Validating a Scale for Secure Software
Development Self-Efficacy” [68]: Built to assess develop-
ers’ secure development self-efficacy. The original study re-
cruited from various channels (e.g., LinkedIn, Prolific, and
personal contacts). We included this survey instrument be-
cause we were also interested in the security skills of our
subjects since recruiting developers for security-related stud-
ies is also a known challenge [25, 40, 63, 65, 68]. This survey
enabled us to provide insights into secure programming self-
efficacy in addition to programming skills. We contacted the
authors for the dataset but due to data sharing constraints,
we were not able to access it.

SEBIS “Scaling the Security Wall: Developing a Security Be-
havior Intentions Scale (SeBIS)” [14]: Built to assess general
security behaviors, directed to all types of users. This survey
has been used extensively by literature in the past five years
(e.g., [13, 23, 24]) and provides insights into general security
behaviors of participants. We contacted the authors and they
kindly agreed to share the original dataset.

IUIPC “Internet Users’ Information Privacy Concerns (IUIPC):
The Construct, the Scale, and a Causal Model” [34]: A classic
survey built to assess general privacy concerns, directed to
all types of users. We included this survey to understand
our participants’ general privacy concerns and provided a
basis for comparing our sample with other publications. We
contacted the authors for the dataset but due to data sharing
constraints, we were not able to access the original data.

The survey ended with a set of demographics questions such as
primary role in a software team, age, gender, and latest employment
status. We also included two attention check questions among
the Likert items. Crowdsourcing participants received $3.09 for
their time (in accordance with minimum wage in our institute’s
home country) and CS students received a $62.37 gift card per 20
participants. Other than a chance to enter a raffle for a gift card,

there were no other incentives offered to the students. We decided
to offer students a raffle-based gift card instead of paying them
individually because of the payment difficulties that might have
occurred with paying a large number of participants without a
platform to manage payments the way a crowdsourcing platform
does. The survey is included in the Supplementary Materials.

3.3 Analysis
In addition to our main RQs, we were also interested in descriptive
statistics such as costs, quality of data (duplicates and passing atten-
tion questions), and demographics of each recruitment channel. We
report these descriptive exploratory findings in the results section
after describing the collected data in Sections 4.2 and 4.3.

For RQ1 and RQ2, unless otherwise noted, regression analyses
were conducted in R using the glm function [18] with the bino-
mial family (logit (logistic regression) as the link function). The
model used a binary outcome variable indicating if a participant
answered all the five REALCODE questions correctly (coded as 1)
or not (coded as 0); and the independent variables were a set of
self-reported programming experiences, demographics, and recruit-
ment channels. We removed Appen from the model as it had no
participants who passed all the programming questions and the
number of participants in the main survey was small as well (N=9).
Sections 4.4 and 4.5 are based on the results of these model.

For RQ3, we performed an exploratory descriptive analysis. We
only included participants who answered all five REALCODE ques-
tions correctly as we were interested in understanding how recruit-
ment channels vary in terms of privacy and security for program-
ming skilled participants. As no participants from Appen answered
all the programming questions correctly, they do not appear in this
sample. Section 4.6 is based on these findings.

3.4 Limitations
Out of the six recommended questions by Danilova et al. [10], we
picked five questions. We decided to include one code comprehen-
sion question instead of the two recommended code comprehension
questions because of time constraints and to reduce the load on
participants. The original study does not require all questions to
be included and the choice of which questions to include is left
to future researchers. Also, the programmers in the original study
answered all the five questions that we selected correctly, giving
us groundwork to compare our results with a set of questions the
programmers answered 100% correctly. Future work may want
to include the other questions and compare the results with our
findings and the original study.

We screened participants based on four criteria, but there might
be other criteria that could better filter out participants that are not
suitable for our target population. Using screening questions such
as if their primary role was a software developer may have resulted
in a sample with higher programming skills than if another question
had been used; however, we are not aware of existing studies that
have looked at these issues and a key goal of our study is to help
better understand this limitation. The screening questions were
also chosen to match those already used by Prolific, as they seemed
reasonable and it would be easy for researchers using that platform
to reach a similar population as our study. However, there is a wide
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range of possible screening questions and the ones we used likely
impacted our resulting population studied.

We find that CS students have higher programming skills with re-
gards to the tested survey instrument, but this result must be taken
with a caveat that we recruited CS students from one CS department
at a single United Kingdom University which is a public research
university among the top 50 universities for CS programs in the
World University Rankings 2021 [12]. Therefore, other universities
may have a different experience recruiting from their CS mailing
lists. We compared self-reported programming experience of our
sample with PROGEX’s sample which was conducted in 2012 with
undergraduate students [16] and found that our students considered
themselves as having more programming experience compared to
PROGEX’s student sample (𝜇 = 5.74, 𝜎 = 1.55 vs. 𝜇 = 4.63, 𝜎 = 1.81,
see Section 4.4.2 for details). One explanation might be that our
mailing list includes postgraduate students as well and PROGEX’s
sample included only undergraduate students. However, our results
are still consistent with prior findings that CS students may be
a valid recruitment channel for participants with programming
skills [31], e.g., for secure programming studies [40, 41, 43].

We focus on one survey instrument (REALCODE) as our pri-
mary outcome variable and treat participants who answered all five
REALCODE programming questions as having programming skills.
The REALCODE scale questions focus on fundamental program-
ming concepts, but those concepts are not universal. A compiler,
for example, is only needed in compiled languages so it is possible
that someone who only uses scripting languages might have less
reason to learn about the concept. Programming is a broad term
and developers also have a diverse range of skills, experience levels,
and backgrounds which may not align well with this question set.
It would be interesting to expand the work in the future to look at
questions that represent a wider range of “programming skills.”

Moreover, our study was conducted during the COVID-19 pan-
demic when many businesses were closed or working remotely.
Such shifts in the labor market may have influenced crowdsourcing
platforms as well. Arechar and Rand [3] reviewed 23 studies with
crowd workers in 2020 (during the pandemic) and showed that
MTurk has become more diverse in terms of political views, eth-
nicity, and experience with conducting tasks which means that the
population is more diverse when we ran our experiment compared
to a pre-pandemic population. However, they also find that partic-
ipants have become less attentive. Based on these findings, there
might be a chance that we observed a high number of duplicate
responses and participants who failed attention check questions
(Section 4.3) due to the pandemic, though, we do not have the data
to either confirm or reject this idea. Future research may replicate a
study that was done pre-pandemic to compare the results with cur-
rent crowd workers to investigate the differences and similarities.

4 FINDINGS
We report our collected data in Section 4.1, then describe our par-
ticipants’ demographics in Section 4.2, and discuss the quality of
responses in Section 4.3. Sections 4.4, 4.5, and 4.6 present our results.

4.1 Collected Data
4.1.1 Screening Survey. 3,990 participants from Appen, Clickworker,
and MTurk, completed the screening survey on Qualtrics, out of
which 563 (14.1%) were removed because they were flagged as du-
plicates by Qualtrics.2 We invited 789 (19.8%) participants to the
main survey who passed our screening criteria (Section 3.2.1). In
total, we spent $1,012.61 on the screening survey (Table 1).

4.1.2 Main Survey. 714 participants (all crowdsourcing + CS stu-
dents) completed the main survey out of which 636 (89.1%) passed
both attention questions. We excluded a further 23 (3.6%) of these
participants because they were duplicate responses flagged by
Qualtrics. Our final set for the main survey included 613 responses.
The rest of the paper is based on the results of the main survey
(N=613). On average, the survey took 18.3 minutes (𝑆𝐷 = 82.7 min-
utes, potentially some participants left the survey open on their
browser and did not fill out the survey all at once). In total, we spent
$2,801.88 on the main survey (Table 1). The anonymized dataset for
the main survey is publicly available online for future references
and potential replication studies (doi: 10.7488/ds/3184).

4.2 Demographics
In our sample of 613 participants, 71.8% reported being male which
falls between the proportion of male developers (over 90% [58])
and the general population on crowdsourcing platforms (45-56%
are male [35, 44]). Participants reported an average of 5.5 years of
experience in software development (𝑆𝐷 = 9.1), and an average age
of 32.6 years (𝑆𝐷 = 6.3), 63.1% work full-time, 35.9% have a primary
role as a software developer, 19.4% do not have a CS-related job,
and 15.5% work in a management role in a software team. Most
participants come from Europe (54.8%, note that CS students were
recruited from a European University mailing list), North America
(27.7%), and Asia (10.8%). The Appendix, Table 4 shows a summary
of participants’ demographics and Table 5 shows a summary of
answers to all five survey instruments per recruitment channel.

4.3 Response Quality and Costs
4.3.1 Response Quality. Table 1 shows a summary of responses
per recruitment channel. In the screening survey, Appen created a
large number of duplicates, potentially because the completion val-
idation is limited to a reused code (not randomized per participant).
Duplicates for Clickworker and MTurk were under 4%.

In the main survey, Prolific and CS students passed both attention
questions the most often with over 93% passing, MTurk was second
with 86.3%, Clickworker was the fourth with 65.5%, and Appen was
the last with 56.3%. Including only the participants who passed the
attention questions still resulted in duplicated responses in MTurk
(10%) and 1 (1.3%) duplicate response from the CS students. Appen
and Clickworker had no duplicates in the participants who passed
the attention check questions.

Overall, our findings are consistent with prior work on com-
paring Appen (known at the time as CrowdFlower), MTurk, and

2Qualtrics’ Q_RelevantIDDuplicate variable is a Boolean value that if True it means
that the response is likely to be a duplicate. “This technology checks if the respondent
is cheating by taking the survey multiple times or whether a survey taker is fraudulent
by analyzing a user’s browser, operating system, and location to provide a fraud
score” [47]).

https://doi.org/10.7488/ds/3184
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Table 1: Summary of recruitment across channels. Costs were converted to USD using xe.com on August 31, 2021. Percentages
were calculated with “completed on Qualtrics” as the denominator, unless stated otherwise. Payment for the surveys were
screening: $0.21 and main $3.09. CS students received a $62.37 gift card per 20 participants. Payments were in accordance with
minimum wage in our institute’s home country.

Appen Clickworker MTurk Prolific CS Students Total

Screening survey

Requested 2,500 1,610 1,933 Used
Prolific’s

screening
(Eligible

Participants:
7,797 of
262,334)

Wasn’t
screened
(Students

on the
mailing list:

2,728)

6,043
Completed on platform 1,684 1,050 1,225 3,959
Completed on Qualtrics 1,680 1,082 1,228 3,990
Duplicates 512 (30.5%) 12 (1.1%) 39 (3.2%) 563 (14.1%)
Passed, invited to main 50 (3%) 132 (12.2%) 265 (21.6%) 789 (19.8%)
Cost $358.48 $297.06 $357.07 $1,012.61
Cost per invitation $7.17 $2.25 $1.35 -

Main survey

Completed on platform 21 56 217 389 - 683
Completed on Qualtrics 16 58 219 341 80 714
Passed both attentions 9 (56.3%) 38 (65.5%) 189 (86.3%) 325 (95.3) 75 (93.8%) 636 (89.1%)
Duplicates (of passed att.) 0 0 22 (10%) 0 1 (1.3%) 23 (3.6%)
Final set 9 (56.3%) 38 (65.5%) 167 (76.3%) 325 (100%) 74 (98.7%) 613 (85.9%)
Cost $56.91 $210.62 $928.76 $1,357.66 $247.93 $2,801.88
Cost per response $6.32 $5.54 $5.56 $4.18 $3.35 $4.57

Total

Population size 9 38 167 325 74 613
Cost Screen + Main $415.39 $507.68 $1,285.83 $1,357.66 $247.93 $3,814.49
Cost per valid response $46.15 $23.53 $9.25 $4.18 $3.35 -

All passed REALCODE

Pass all five programming questions 0 (0%) 24 (63.2%) 14 (8.4%) 108 (33.2%) 66 (89.2%) 212 (34.6%)
Cost per programming skilled participant - $21.15 $91.85 $12.57 $3.76 -

Prolific [44]. Prolific produced higher quality data in terms of dupli-
cates and passing attention checks compared to Appen, as well as
fewer duplicates and participants failing attention checks compared
to MTurk (though, Peer et al. [44] found that MTurk is comparable
to Prolific). Appen had the highest number of duplicates in the
screening survey, which echos the findings of Peer et al. [45].

4.3.2 Costs. We find that CS students are the most cost-effective
channel for recruiting participants with programming skills. We
recruit 66 participants with an average cost of $3.76 per participant
(total cost: $247.93). Prolific also created a sample size of 108 partici-
pants with programming skills, however, each response cost $12.57
(total cost: $1357.66). Notably, a separate screening survey was not
needed on Prolific (used screening criteria on Prolific that matched
with our screening survey with no additional costs) and CS stu-
dents which reduced costs. Clickworker and MTurk were expensive
and may not be the most cost-effective channels if a programming
skilled sample is required. Appen produced zero responses with

programming skills, hence, we cannot recommend it for this type
of recruitment and restrict our analyses to the other channels.

4.4 Where to Find Participants With
Programming Skills?

We used the REALCODE and PROGEX survey instruments to assess
basic knowledge of programming and self-reported programming
experience. Here we looked at both instruments separately by chan-
nel and compared to what was found by prior work. We also looked
at how they compare to each other.

4.4.1 REALCODE. Unlike the other survey instruments which
use self-report for assessment, the REALCODE instrument asks
participants five basic programming questions aimed at assessing
if they have experience with writing code. The questions asked
are multiple choice and focus on common programming-related
experiences such as what values go in binary variables, or what
website is a common place to find solutions to programming prob-
lems (Stack Overflow). In the original work by Danilova et al. [10],

https://www.xe.com
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Table 2: Generalized linear model regression. Outcome vari-
able is a binary variable that represents whether a partici-
pant got all the five REALCODE questions correct (coded as
1) or not (coded as 0). OR: odds ratios, CI: confidence inter-
vals, Tjur’s R2: .267, No. observations: 604 (excludes Appen),
∗𝑝 < .05, ∗ ∗ 𝑝 < .01, ∗ ∗ ∗𝑝 < .001.

Independent Variables ORs CI (95%) 𝑝𝑝𝑝–value

Recruitment channel

Prolific Reference

Clickworker 3.44 1.73 – 7.08 .001***
MTurk 0.18 0.10 – 0.32 <.001***
CS students 16.58 8.12 – 38.56 <.001***

(Intercept) 0.50 0.39 – 0.63 <.001***

100% of real programmers answered all five questions correctly and
2% of non-programmers answered all five questions correctly.

In total, 212 (34.6%) of participants correctly answered all the
five programming questions. CS students produced the highest
percentage (66, 89.2%), followed by Clickworker (24, 63.2%), Prolific
(108, 33.2%), and MTurk (14, 8.4%). None of the Appen participants
answered all five questions correctly (hence, we cannot recommend
it for this type of recruitment), which is at odds with their self-
reported years of experience in software development (on average
11.78 years). Appendix Table 6 shows the number of correct answers
per channel for each of these five questions.

Regression model. We first built a generalized linear (logit) re-
gression model predicting completely correct (5/5) REALCODE
answers as the outcome, with channel as a categorical predictor
(Table 2). We omitted other covariates in this model as our focus
here is on the marginal effect of the channel, rather than questions
of whether channels’ participants are different in ways that cannot
be explained by other covariates. We find that CS students are 16.6
times (𝑝 < .001) and Clickworkers are 3.4 times (𝑝 < .001) more
likely to pass all questions compared to Prolific participants. For
MTurk, the odds of getting all the programming questions correct
is 82% (𝑝 < .001) lower compared to Prolific participants.

4.4.2 PROGEX. Looking at self-reported experience around pro-
gramming using the three recommended questions from PROGEX
(Appendix Tables 5 and 7), we can see a variation across differ-
ent recruitment channels in terms of self-reported programming
experience (10-point scale) with MTurk (𝜇 = 7.2, 𝜎 = 2.06) more
self-confident in their programming experience than Clickworker
(𝜇 = 6.3, 𝜎 = 2.04), CS students (𝜇 = 5.7, 𝜎 = 1.55), and Prolific
(𝜇 = 5.2, 𝜎 = 2.37). Questions about experience compared to class-
mates and familiarity with object-oriented programming showed a
similar pattern, with MTurk showing high-confidence and Prolific
showing the lowest self-confidence.

We also compared our CS student sample against the student
sample used by Feigenspan et al. [16] in the work that introduces
PROGEX. The self-reported programming experience of our CS

students (𝜇 = 5.74, 𝜎 = 1.55) was statistically significantly higher
than the CS students studied in Feigenspan et al. [16] (𝜇 = 4.63, 𝜎 =

1.81), t(136) = −3.95, 𝑝 < .001. We hypothesize that this difference
likely comes from sampling students at different universities. Our
mailing list also includes postgraduate students, but Feigenspan
et al. [16]’s sample only included undergraduate students. In short,
our sample of CS students reported lower programming experience
compared to crowdsourcing platforms but higher programming
experience compared to their peers from prior work.

4.4.3 REALCODE vs. PROGEX. Taking a brief look at how the most
general question in PROGEX—their self-assessed programming
experience—in relation to if they answered all the REALCODE an-
swers correctly or not, we reassuringly see that the self-estimation
of those who passed all REALCODE questions (𝜎 = 6.38, 𝜇 = 1.85)
is statistically significantly higher than those who did not (𝜎 = 5.62,
𝜇 = 2.53), t(550) = 4.23, 𝑝 < .001.

We treated the Likert data as an interval variable [7] and ran t-
tests on them, which is common practice in the CHI community [29].
We also used Bonferroni correction for the t-tests because they were
not part of the main study’s objectives.

4.5 Demographics and Programming Skills
We built another generalized linear (logit) regression model also
predicting completely correct (5/5) REALCODE answers as the
outcome, with categorical predictors of channel, the most recent
primary job role, years of experience in software development, and
PROGEX as a model and found that all channels still differ from
Prolific in terms of participants who answered all the programming
questions correctly; however, the coefficients change (Table 3). CS
students are 26 times (𝑝 < .0001) and Clickworkers are 2.2 times
(𝑝 = .049) more likely to pass all questions compared to Prolific.
It is possible that the addition of years of experience in software
development explained some of the variation since CS students had
fewer years of experience with 71.6% having three years or less
compared to 50% of crowdsourcing participants having three years
or less. The odds of MTurk participants getting all the questions
correct is 90% (𝑝 < .001) lower compared to Prolific.

We also find that years of experience in software development
is significantly correlated with getting all programming questions
correct. One unit increase in years of experience in software devel-
opment increases the odds of getting all questions correct by 8%
(𝑝 < .0001).

When it comes to primary role in a software team, we find that
self-reporting being a software developer is significantly correlated
with answering all programming questions correctly. Participants
who reported that they are a developer are 2.4 times (𝑝 = .01)
more likely to get all programming questions correct compared to
participants who do not work in a computer science-related role.

The correlation for two questions from PROGEX, ratings of pro-
gramming experience and comparing programming experience
with class/work mates, were not significant and conclusive. How-
ever, one unit increase in experience with object-oriented program-
ming is correlated with 58% (𝑝 = .001) increase in the odds of
getting all programming questions correct.
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Table 3: Generalized linear model regression that includes
self-reported demographics and programming experiences.
Outcome variable is a binary variable that represents
whether a participant got all the five REALCODE questions
correct (coded as 1) or not (coded as 0). OR: odds ratios, CI:
confidence intervals, Tjur’s R2: .417, No. observations: 604
(excludes Appen), ∗𝑝 < .05, ∗ ∗ 𝑝 < .01, ∗ ∗ ∗𝑝 < .001.

Independent Variables ORs CI (95%) 𝑝𝑝𝑝–value

Years of experience in software development 1.08 1.04 – 1.12 <.001***
PROGEX

Rating of programming experience 1.07 0.92 – 1.24 .416
Programming experience compared to class/work mates 1.08 0.79 – 1.48 .636
Experience in object-oriented programming 1.58 1.22 – 2.06 .001***

Recruitment channel

Prolific Reference

Clickworker 2.23 1.01 – 5.04 .049*
MTurk 0.10 0.05 – 0.19 <.001***
CS students 25.99 10.22 – 81.51 <.001***

Primary role in a software team

Not CS-related Reference

Developer 2.44 1.25 – 4.87 .010**
Designer 0.94 0.28 – 2.78 .911
Manager 1.00 0.44 – 2.25 .994
Privacy/Security 1.38 0.25 – 6.68 .692
Tester 1.33 0.48 – 3.51 .568
Unemployed 0.80 0.21 – 2.64 .724
Other 1.59 0.55 – 4.39 .380

(Intercept) 0.02 0.01 – 0.07 <.001***

4.6 Privacy and Security
In addition to general programming skills, we also investigated
attitudes towards security and privacy as these can have a serious
impact on code quality and represent a growing area of research.
To answer RQ3, we explore the differences between recruitment
channels in relation to the three privacy and security-related survey
instruments. We present boxplots (Figures 1, 2, and 3) of three sur-
vey instruments broken down by channel and discuss observations.
The results in this section are limited to the participants who passed
all five REALCODE questions.

4.6.1 SSDSES. This survey instrument focuses on secure software
development self-efficacy and is made up of two components: se-
curity communication and vulnerability identification. The secure
communication component focuses on the ability to communicate
security issues effectively with others and to upper-level manage-
ment. The vulnerability component focuses on the ability to identify
various threats to systems and code as well as perform a risk analy-
sis. Across all recruitment channels, participants generally rated
their communication skills for security higher than their skills in
identifying and mitigating security vulnerabilities (Figure 1). In
the original SSDSES paper, participants also often rated their com-
munication skills higher than their identification and mitigation
skills [68]. When looking at the differences between channels, we
see that MTurkers rated themselves higher than all other chan-
nels on average and also had the most similar scores between the
components with an average difference of 0.35 between the com-
ponents compared to 0.58 for the other channels. Crowdsourcing

Clickworker MTurk Proli�c All
crowdsourcing

CS students
1

2

3

4

5

SS
D

SE
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Security communicatation Vulnerability identi�cation

Figure 1: Summary of secure development self-efficacy for
only participants who passed REALCODE (scale 1–5). Secu-
rity communication: being able to discuss security with oth-
ers; vulnerability identification: being able to identify and
mitigate security vulnerabilities.
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Figure 2: Summary of security behavior intentions for only
participants who passed REALCODE (scale 1–5). Last col-
umn (SEBISOriginal Data) is from the original SEBIS dataset
recruited from MTurk in 2015 [14].
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Figure 3: Summary of internet users’ information privacy
concerns for only participants who passed REALCODE
(scale 1–7).
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participants also rated themselves higher than CS students. CS
students had the lowest rating for vulnerability identification and
mitigation, which we hypothesize comes from knowing how diffi-
cult doing some of these tasks might be (e.g., identifying potential
attack vectors and mimicking potential threats).

4.6.2 SEBIS. This instrument focuses on general security behav-
iors and is intended for a general audience rather than specifically
developers. It has four components: device, awareness, password,
and updating. In terms of general security attitudes, we find that
device securement (e.g., locking devices and using PINs) had the
highest rating among all participants which is not in line with
the original SEBIS dataset collected from MTurk in 2015 [14]. One
explanation could be different time periods and general secure atti-
tudes for devices have increased over time. The other explanation
might be that our population has some programming skills and
as a side effect their understanding of security and information
technology might be higher than the general population. Compar-
ing CS students with crowdsourcing participants shows a lower
attitude in CS students towards updating (e.g., keeping systems up-
to-date), password generation (e.g., generating stronger passwords),
and proactive awareness (e.g., checking for links before clicking)
which is somewhat surprising as CS students are exposed to several
privacy and security topics at the University.

4.6.3 IUIPC. This instrument is also intended to be used with
a general audience and focuses on users’ attitudes towards how
privacy should be enacted online. It has three components: con-
trol, awareness, and collection. General privacy attitudes of our CS
students were overall higher than for other recruitment channels
which is in odds with their general security behaviors in SEBIS
(Section 4.6.2). In all crowdsourcing participants, we observed that
they rated the awareness component (e.g., awareness about how
companies are using personal data) higher than control (e.g., con-
trol of personal information is at the center of user privacy) and
collection (e.g., how data collection bothers them). Such a pattern
is in line with the original data set that was collected in 2004 [14];
higher awareness compared to control and collection (awareness:
𝜇 = 6.21, 𝜎 = 0.87, control: 𝜇 = 5.67, 𝜎 = 1.06, and collection:
𝜇 = 5.63, 𝜎 = 1.09).

5 DISCUSSION AND FUTUREWORK
We recruited 613 participants from four crowdsourcing platforms
(Appen, Clickworker, MTurk, and Prolific) and a CS student mailing
list, out of which 212 passed all (5/5) REALCODE programming
questions suggested by Danilova et al. [10]. We find that overall, CS
students produce high-quality data in terms of programming skills
(highest), costs (lowest), number of duplicates (low), and passing
attention check questions (high) compared to all crowdsourcing
platforms. Among crowdsourcing platforms, we find that Prolific
generated a higher number of participants who passed the basic
programming questions and was more cost-effective compared to
Appen, Clickworker, and MTurk. In the following, we discuss im-
plications of our work in regards to self-reported programming
skills (Section 5.1) and make suggestions both for researchers (Sec-
tion 5.2) and crowdsourcing platforms (Section 5.3) to improve the
recruitment process of participants with programming skills. We

also dedicate a subsection to our experience with the recruitment
channels as lessons learned for future researchers (Section 5.4).

5.1 Self-Reported Programming Skills
We find that participants interpret “programming skills” differ-
ently across all channels. All of the crowdsourcing participants
self-identified as having programming skills in the screening sur-
vey, yet their answers to other questions shows a wide range of
experience and skills. Notably, 31.5% of crowdsourcing participants
could not correctly select the most fitting value for a Boolean from
a multiple-choice list and 33% could not select the correct descrip-
tion of a compiler. Even more interestingly, 27.9% of crowdsourcing
participants got one of those two questions wrong but not the other.
These findings suggest that participants may indeed have some
programming skills but their skills may be limited in scope and
depth. For example, someone who only programs in an interpreted
language (e.g., JavaScript) might not have to know what a compiler
is to write functioning code. Participants who have completed one
programming course or done a self-directed coding project may
also indicate that they have programming skills.

Recent efforts have worked to bring programming to a wider au-
dience by teaching it to younger people in schools and through self-
learning websites aimed at general audiences. While laudable, these
initiatives may also be increasing the number of people exposed to
programming concepts and therefore the number of people who
might self-identify as having programming skills or programming
experience. Therefore, we recommend that researchers avoid simple
questions such as “Do you have programming skills?” for screening
and instead ask questions that more concretely define the types
of skills required by the research, for example, the object-oriented
question in PROGEX or the types of questions in REALCODE.

Using existing survey instruments though comes with some
risks. Similar to how many of the questions proposed by Kahneman
[27] for use in psychology experiments are now well known to
crowdsourcing workers, overuse of instruments like PROGEX or
REALCODE may lead to these groups learning and automatically
responding with the “correct” answers rather than thinking about
the answers themselves. One avenue for future research is to extend
these instruments to provide a longer list of questions to future
researchers so that they can randomly select a few of them to be
presented to the participants (with a timer potentially as suggested
for some questions in Danilova et al. [10]).

5.2 Recommendations for Researchers
5.2.1 Consider Recruiting CS Students. We suggest recruiting CS
students as a population for running studies that require program-
ming skills. While they may not well represent seasoned developers
working in industry, they are a good source of people with basic
programming experience. If recruiting from a specific university,
they will also have a more homogeneous background which can re-
duce unexpected confounds. Compared to crowdsourcing platforms
CS students are accessible, cost-effective, and produce high-quality
data in terms of the number of duplicates and passing attention
check questions. Recruiting from multiple institutes through col-
laborations instead of staying with one mailing list may also help
reduce biases inherent with a single-university sample.
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5.2.2 Screen Crowdsourcing Participants and Account for Extra
Costs. If researchers need participants with programming skills,
we suggest using Prolific compared to Appen, Clickworker, and
MTurk. Prolific makes it easy to screen participants without ad-
ditional costs, however, the return rate could be low. Therefore,
we suggest asking for a sample size with about three times more
than the desired final sample size; or running a separate screening
survey (e.g., if looking for 100 participants with programming skills,
start the survey with 300, and then filter out participants who do
not pass programming questions; or run a screening survey first).
Running screening surveys or recruiting additional participants
also causes additional costs which should be taken into account.

5.2.3 Consider Privacy and Security Differences in Recruitment
Channels. While CS students rated themselves lower in secure
software development self-efficacy, they did the best on the pro-
gramming questions. On the other hand, lower general security
behaviors of CS students and higher privacy attitudes from them
means that running studies involving privacy and security elements
may result in a population with higher privacy attitudes and lower
security attitudes compared to a crowdsourcing population with
programming skills. We find that even among crowdsourcing par-
ticipants privacy and security attitudes differ (e.g., Clickworkers
have a higher awareness of online companies’ privacy practices
compared to MTurk and Prolific participants), which should be con-
sidered when recruiting participants for usable privacy and security
studies. We suggest recruiting from multiple channels instead of
one to minimize such effects and have a more diverse population.

5.3 Recommendations for Crowdsourcing
Platforms

With the increase in human-centered studies [55], there is a demand
for specific types of populations; for example, in our case, a sample
with programming skills. The opportunity here for crowdsourcing
platforms is to offer specific and niche screening criteria and pop-
ulations that may give them a competitive advantage over other
platforms with basic screening criteria and a general population.
Below we make suggestions to improve the situation for recruiting
participants with programming skills.

Based on our findings, it is clear that the question “Do you have
programming skills” does not correlate with basic programming
skills and knowledge as defined by REALCODE. Participants on
crowdsourcing platforms may overestimate their programming
skills or simply interpret the term more broadly, as a result such
a question is not helpful as screening criteria. We suggest crowd-
sourcing platforms adopt new programming-related questions that
better represent the level or type of skill to ensure that partici-
pants who pass those questions are able to participate in studies
with required programming skills (e.g., questions from Danilova
et al. [10]). We also believe that these questions should change and
update over time so that the answers do not circulate in the partici-
pants community. One short-term and easy-to-adopt suggestion is
to use the more specific self-reported questions such as experience
in object-oriented programming (very inexperienced to very experi-
enced [16]), years of experience in software development (numeric),
and primary role in software development teams (e.g., software de-
veloper, tester, manager). While these are still self-reported, we find

them overall more correlated to programming skills compared to
the general yes/no question of “Do you have programming skills?”

5.4 Researcher Experience of Recruitment
While conducting this research, we gained a good deal of experi-
ence with the various platforms used to recruit participants. In this
section, we reflect on our experience with these platforms so future
researchers can learn from our experiences. However, we note that
these are anecdotal observations; no formal usability evaluation of
the platforms was done.

Several key challenges came up across all the platforms, though
they handled them quite differently. We describe the challenges here,
and then below discuss what they looked like on each platform. The
first challenge was how to do a hand-off between the crowdsourcing
platform and our Qualtrics survey software. Typically this is done
by providing a link to the Qualtrics survey on the crowdsourcing
platform, collecting the participant’s platform-generated ID, and
then after the survey is completed providing a completion code
(either randomized or a static reused code) at the end of the survey
which the participant then enters into the crowdsourcing platform
to demonstrate completion of the job. We then compare the IDs
and codes entered into the crowdsourcing platform against those
recorded in Qualtrics and provide payment to those that are valid.
Including and excluding participants was another challenge due to
two reasons: (1) the main survey needed to be made available only to
participants who passed the screening criteria, and (2) early versions
of the survey were tested with participants resulting in a need to
exclude these participants from retaking the survey. However, each
platform had some amount of variation on these processes. Below,
we discuss these challenges for each channel:

5.4.1 Appen. Using Appen required us to have an institute-wide
account first, which we thankfully had, but it may mean extra
time and money to setup for those without. The language used
on features is focused on running labeling tasks (e.g., rows, agree-
ment, and judgment). Support for running surveys is limited and
the completion validation is limited to a static reused code (not
randomized per participant) that also appears in an HTML tag
(i.e., data-validates-regex). Restricting participants to those that
passed the screening survey was done through a graphical interface
that enabled us to import a comma-separated values (CSV) file with
the selected participants’ IDs of those who passed the screening
criteria. Excluding participants who already took the survey was
done in this way as well. We could not find a way to include partic-
ipant’s ID in the link to Qualtrics as an extra parameter, so we also
had to ask participants to enter their ID manually. We could also
export additional information about participants from Appen itself,
such as location and start time.

5.4.2 Clickworker. Account creation did not require our institute to
be involved. When creating a task, we had to select which countries
we wanted our task to be advertised in, and we had to add countries
one by one from a list instead of adding multiple countries all at
once. To reduce the risks of having errors in the tasks, we ran tasks
in smaller sample sizes first. However, because there was no option
to increase the number of participants in a task, we had to run mul-
tiple tasks excluding participants from the previous tasks. Though,
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doing so was easy as we could select previous tasks to be excluded.
The completion code was a static reused code that was the same
for all participants. Excluding and including participants (e.g., for
those who passed the screening criteria) is done through a “Team”
feature which does not support uploading CSV files; meaning that
to advertise the main survey to the selected participants, we had
to add all selected participants’ IDs manually one by one. There
was no extra information provided about participants. Including
participant’s ID in the URL was not consistent and sometimes it
did not include the IDs; we asked participants for their IDs in the
survey to ensure consistency.

5.4.3 MTurk. We used MTurk’s basic service and interface without
the API. We were able to create an individual account. Including
and excluding participants (e.g., for those who passed the screening
criteria) required creating qualifications which was not the most
intuitive method; however, it was possible to upload CSV files with
a list of participants’ IDs to be excluded or included which also
means that excluding participants from previous tasks required us
to create a new list to be excluded (again, we ran multiple smaller
tasks first to reduce the chances of errors). MTurk also charges
extra for adding qualifications to a task depending on their fees,
qualification type, and number of participants. We were able to
export a few extra pieces of information about participants such as
start date and approval rating. We had to collect the participants’
IDs from the users in the survey instead of passing them in the URL.
A randomized completion per participant code was used.

5.4.4 Prolific. We were able to create an individual account. In-
cluding and excluding participants from previous tasks is done
through the screening interface similar to other screening criteria
by copy-pasting a list of participants’ IDs or completely exclud-
ing participants from a task. However, we did not use this feature
because we did not run a screening survey on Prolific, and for
increasing the number of participants we could increase the popu-
lation size without worrying about needing to exclude participants
who already took the survey. It is possible to add multiple screening
criteria such as programming skills, language, and level of educa-
tion without extra cost. It is also possible to pass extra parameters
including participant’s ID in the URL and Qualtrics will capture
them. Extra information about participants such as time taken, loca-
tion, gender, and language can be exported as well. A static reusable
completion code was used.

5.4.5 CS Students. We had to ask for permission to send out our
email from our mailing list moderators. Other than the permission,
we had no issues. We chose not to run a screening survey with
this channel, and therefore, no challenges with excluding/including
participants arose. Compensation was easy to manage by randomly
selecting participants and sending an email with their gift cards.

6 CONCLUSION
We recruited 539 participants from four crowdsourcing platforms
who claimed to have programming experience and also 74 CS stu-
dents from our local institute’s CS mailing list (in total, 613 partic-
ipants). We found that overall, university CS students are a good
source for recruiting participants with programming skills and

Prolific, as a recruitment channel, in the tested crowdsourcing plat-
forms results in a cost-effective sample with a higher number of
participants with basic programming knowledge.

We recommend that researchers working in the human factors
of software engineering account for the extra costs of screening
participants and consider using CS mailing lists, potentially col-
laborating with other researchers in other universities to reduce
validity issues. We also suggest that developer-centered privacy and
security researchers consider the differences in privacy and security
attitudes of participants from various recruitment channels and
aim for multiple channels to reduce bias against one recruitment
channel, which may have higher or lower privacy and security
attitudes compared to other channels.
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A PARTICIPANTS’ DEMOGRAPHICS
Table 4 shows a summary of participants’ demographics from the
main survey.

B ANSWERS TO ALL SURVEY INSTRUMENTS
Table 5 shows the mean and standard deviation of each survey
instrument per recruitment channel.

C ANSWERS TO REALCODE QUESTIONS
Table 6 shows the five instrument questions with the percentage of
participants in each recruitment channel that answered the question
correctly. We also include “Programmer” and “Non-Programmer”
columns from the original REALCODE paper [10] for comparison
to prior work.

D ANSWERS TO PROGEX QUESTIONS
Table 7 shows the mean and standard deviation for three recom-
mended questions by Feigenspan et al. [16]. We also include a
column to present the data from the original PROGEX paper for
comparison with prior work.
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Table 4: Summary of demographics. 𝜇: mean, 𝜎 : standard deviation. The denominator for percentages is the respective “popu-
lation size.”

Appen Clickworker MTurk Prolific CS Students Total

Population size 9 38 167 325 74 613
Self-reported as a CS student* 3 (33.3%) 10 (26.3%) 90 (53.9%) 47 (14.5%) 72 (97.3%) 222 (36.2%)
Gender

Male 8 (88.9%) 31 (81.6%) 121 (72.5%) 240 (73.8%) 40 (54.1%) 440 (71.8%)
Female 1 (11.1%) 6 (15.8%) 46 (27.5%) 79 (24.3%) 28 (37.8%) 160 (26.1%)
Other 1 (2.6%) 6 (1.8%) 6 (8.1%) 13 (2.1%)

Number of employees

1-9 employees 2 (22.2%) 10 (26.3%) 4 (2.4%) 100 (30.8%) 29 (39.2%) 145 (23.7%)
10-99 employees 1 (11.1%) 10 (26.3%) 52 (31.1%) 85 (26.2%) 15 (20.3%) 163 (26.6%)
100-999 employees 4 (44.4%) 9 (23.7%) 87 (52.1%) 64 (19.7%) 11 (14.9%) 175 (28.5%)
1,000-9,999 employees 2 (22.2%) 6 (15.8%) 18 (10.8%) 45 (13.8%) 5 (6.8%) 76 (12.4%)
10,000 or more employees 3 (7.9%) 6 (3.6%) 31 (9.5%) 14 (18.9%) 54 (8.8%)

Primary role in software teams

Developer 5 (55.6%) 21 (55.3%) 71 (42.5%) 96 (29.5%) 27 (36.5%) 220 (35.9%)
Manager 2 (22.2%) 6 (15.8%) 49 (29.3%) 49 (15.1%) 1 (1.4%) 107 (17.5%)
Designer 2 (5.3%) 14 (8.4%) 21 (6.5%) 3 (4.1%) 40 (6.5%)
Privacy/Security 1 (0.6%) 8 (2.5%) 2 (2.7%) 11 (1.8%)
Tester 2 (5.3%) 18 (10.8%) 22 (6.8%) 2 (2.7%) 44 (7.2%)
Not CS-related 2 (22.2%) 7 (18.4%) 12 (7.2%) 92 (28.3%) 6 (8.1%) 119 (19.4%)
Unemployed 13 (4%) 29 (39.2%) 42 (6.9%)
Other 2 (1.2%) 24 (7.4%) 4 (5.4%) 30 (4.9%)

Latest employment status

Full-time 8 (88.9%) 25 (65.8%) 146 (87.4%) 203 (62.5%) 10 (13.5%) 392 (63.9%)
Part-time 3 (7.9%) 11 (6.6%) 22 (6.8%) 9 (12.2%) 45 (7.3%)
Consultant/Freelance 1 (11.1%) 6 (15.8%) 7 (4.2%) 39 (12%) 53 (8.6%)
Student 3 (7.9%) 2 (1.2%) 33 (10.2%) 44 (59.5%) 82 (13.4%)
Furloughed/On leave 1 (2.6%) 3 (0.9%) 4 (0.7%)
Unemployed 14 (4.3%) 4 (5.4%) 18 (2.9%)
Other 1 (0.6%) 11 (3.4%) 7 (9.5%) 19 (3.1%)

Current continent

Africa 2 (22.2%) 5 (13.2%) 25 (7.7%) 32 (5.2%)
Asia 5 (55.6%) 10 (26.3%) 39 (23.4%) 3 (0.9%) 9 (12.2%) 66 (10.8%)
Europe 1 (11.1%) 13 (34.2%) 3 (1.8%) 254 (78.2%) 65 (87.8%) 336 (54.8%)
North America 1 (11.1%) 8 (21.1%) 123 (73.7%) 39 (12%) 170 (27.7%)
Oceania 2 (5.3%) 4 (1.2%) 6 (1%)
South America 2 (1.2%) 2 (0.3%)
Other 1 (0.6%) 1 (0.2%)

Age (𝜇, 𝜎) 40.22, 5.78 34.97, 9.07 33.92, 8.21 34.07, 8.75 22.91, 5.29 32.62, 9.09
Years of software dev (𝜇, 𝜎) 11.78, 6.83 8.95, 8.84 5.77, 5.22 5.44, 6.70 2.94, 3.59 5.48, 6.31
Team members (𝜇, 𝜎) 13, 8.51 12.74, 25.58 35.81, 88.51 8.34, 21.29 5.24, 5.26 18.37, 58.82

*Despite our screening for not being a student in the crowdsourcing platforms, we got many CS students from them,
which might come from some participants working and also being a CS student.
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Table 5: Mean (𝜇) and standard deviation (𝜎) of all five survey instruments across channels. Numbers in the parentheses show
the range.

Appen (N=9) Clickworker (N=38) MTurk (N=167) Prolific (N=325) CS Students (N=74) Total (N=613)

𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎 𝜇𝜇𝜇 𝜎𝜎𝜎

PROGEX

Programming experience (0–10) 7.89 1.45 6.34 2.04 7.19 2.06 5.20 2.37 5.74 1.55 6.00 2.39
Programming experience compared to class/work mates (0–5) 4.11 0.33 3.63 0.97 3.92 0.80 3.41 0.98 3.61 0.92 3.59 0.97
Experience in object-oriented programming (0–5) 4.00 0.87 3.92 1.05 3.91 0.92 3.41 1.22 3.89 0.92 3.62 1.13

REALCODE

Count of correct answers (0–5) 2.67 0.87 4.34 1.17 2.13 1.51 3.23 1.67 4.84 0.50 2.98 1.77
SSDSES (0–5)

Security communication 3.51 1.33 3.34 0.91 3.68 0.67 3.05 1.07 2.61 0.96 3.23 1.01
Vulnerability identification and mitigation 3.33 1.21 2.93 0.98 3.65 0.70 2.64 1.05 2.04 0.83 1.08 1.28

SEBIS (0–5)
Proactive awareness 3.53 0.83 3.74 0.82 2.91 0.69 3.74 0.67 3.45 0.65 3.40 0.79
Device securement 4.08 1.35 4.41 0.91 3.92 0.71 4.30 0.80 4.20 0.66 4.13 0.81
Password generation 3.75 0.89 3.59 0.78 3.36 0.61 3.56 0.82 3.32 0.74 3.44 0.76
Updating 4.19 1.03 3.85 0.83 3.76 0.69 3.76 0.81 3.33 0.71 3.72 0.78

IUIPC (0–7)
Awareness 5.35 1.39 5.45 1.28 5.41 0.92 5.66 0.90 5.87 0.83 5.94 0.90
Collection 4.92 1.91 5.49 1.35 5.43 0.99 5.67 1.06 5.63 1.23 5.56 1.12
Control 5.35 1.39 5.45 1.28 5.41 0.92 5.66 0.90 5.87 0.83 5.58 0.96

Table 6: Percentage of participants from each channel that correctly answered each of the REALCODE questions. “Program-
mer” and “Non-Programmer” columns are from Danilova et al. [10] for comparison with ground-truth (non-)programmers.

Collected data in this paper Danilova et al. [10]

Appen Clickworker MTurk Prolific CS Students Total Non-Programmer Programmer

Population size 9 38 167 325 74 613 100 50
Frequent website as aid for programming 5 (55.6%) 33 (86.8%) 55 (32.9%) 200 (61.5%) 74 (100%) 367 (59.9%) 6 (6%) 50 (100%)
Description of a compiler’s function 7 (77.8%) 33 (86.8%) 76 (45.5%) 246 (75.7%) 72 (97.3%) 434 (70.8%) 33 (33%) 50 (100%)
Definition of a recursive function 2 (22.2%) 33 (86.8%) 69 (41.3%) 199 (61.2%) 70 (94.6%) 373 (60.8%) 30 (30%) 50 (100%)
Value of a Boolean variable 8 (88.9%) 34 (89.5%) 81 (48.5%) 248 (76.3%) 73 (98.6%) 444 (72.4%) 25 (25%) 50 (100%)
Parameter of the function in a sample code 2 (22.2%) 32 (84.2%) 74 (44.3%) 157 (48.3%) 69 (93.2%) 334 (54.5%) 13 (13%) 50 (100%)

All answers correct 0 (0%) 24 (63.2%) 14 (8.4%) 108 (33.2%) 66 (89.2%) 212 (34.6%) 2 (2%) 50 (100%)

Table 7: Programming experience, programming experience comparing to classmates, and experience with object-oriented
programming for our data as well as data from Feigenspan et al. [16]. The columns with REALCODE split the data into partic-
ipants who passed all five REALCODE programming questions vs. those who did not.

Collected data in this paper

Feigenspan et al. [16]Individual recruitment channels Regardless of recruitment channel

Prolific Clickworker MTurk CS students Passed REALCODE Failed REALCODE

Programming experience

𝜇 5.20 6.34 7.19 5.74 6.38 5.62 4.63
𝜎 2.37 2.04 2.06 1.55 1.85 2.53 1.81

Programming experience compared to class/work mates

𝜇 3.41 3.63 3.92 3.61 3.78 3.48 2.05
𝜎 0.98 0.97 0.80 0.92 0.83 0.99 0.84

Experience with object-oriented programming

𝜇 3.41 3.92 3.91 3.89 4.04 3.42 3.59
𝜎 1.22 1.05 0.92 0.92 0.89 1.17 0.92
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