Users need accurate and relevant guidance about phishing to take the right action on specific cases. This study investigates the effectiveness of guidance based on features extracted from emails, which even in AI-driven systems can sometimes be inaccurate, leading to poor advice. We examined three conditions: control (generic advice), perfect advice, and realistic advice, through an online survey of 489 participants on Prolific, and measured user accuracy and confidence in phishing detection with and without guidance. Our findings indicate that having advice specific to the email is more effective than generic guidance (control). Inaccuracies in the guidance can also impact user decisions and reduce detection accuracy. 🏆 Honorable Mention.